Equivariant Neural Rendering
- URL: http://arxiv.org/abs/2006.07630v2
- Date: Mon, 21 Dec 2020 11:28:31 GMT
- Title: Equivariant Neural Rendering
- Authors: Emilien Dupont, Miguel Angel Bautista, Alex Colburn, Aditya Sankar,
Carlos Guestrin, Josh Susskind, Qi Shan
- Abstract summary: We propose a framework for learning neural scene representations directly from images, without 3D supervision.
Our key insight is that 3D structure can be imposed by ensuring that the learned representation transforms like a real 3D scene.
Our formulation allows us to infer and render scenes in real time while achieving comparable results to models requiring minutes for inference.
- Score: 22.95150913645939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a framework for learning neural scene representations directly
from images, without 3D supervision. Our key insight is that 3D structure can
be imposed by ensuring that the learned representation transforms like a real
3D scene. Specifically, we introduce a loss which enforces equivariance of the
scene representation with respect to 3D transformations. Our formulation allows
us to infer and render scenes in real time while achieving comparable results
to models requiring minutes for inference. In addition, we introduce two
challenging new datasets for scene representation and neural rendering,
including scenes with complex lighting and backgrounds. Through experiments, we
show that our model achieves compelling results on these datasets as well as on
standard ShapeNet benchmarks.
Related papers
- DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features [65.8738034806085]
DistillNeRF is a self-supervised learning framework for understanding 3D environments in autonomous driving scenes.
Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs.
arXiv Detail & Related papers (2024-06-17T21:15:13Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
We introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes.
First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes.
Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images.
arXiv Detail & Related papers (2024-02-05T19:00:45Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
We present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives.
Unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images.
We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points.
arXiv Detail & Related papers (2023-07-11T17:58:31Z) - 3inGAN: Learning a 3D Generative Model from Images of a Self-similar
Scene [34.2144933185175]
3inGAN is an unconditional 3D generative model trained from 2D images of a single self-similar 3D scene.
We show results on semi-stochastic scenes of varying scale and complexity, obtained from real and synthetic sources.
arXiv Detail & Related papers (2022-11-27T18:03:21Z) - Neural Groundplans: Persistent Neural Scene Representations from a
Single Image [90.04272671464238]
We present a method to map 2D image observations of a scene to a persistent 3D scene representation.
We propose conditional neural groundplans as persistent and memory-efficient scene representations.
arXiv Detail & Related papers (2022-07-22T17:41:24Z) - 3DP3: 3D Scene Perception via Probabilistic Programming [28.491817202574932]
3DP3 is a framework for inverse graphics that uses inference in a structured generative model of objects, scenes, and images.
Our results demonstrate that 3DP3 is more accurate at 6DoF object pose estimation from real images than deep learning baselines.
arXiv Detail & Related papers (2021-10-30T19:10:34Z) - Light Field Networks: Neural Scene Representations with
Single-Evaluation Rendering [60.02806355570514]
Inferring representations of 3D scenes from 2D observations is a fundamental problem of computer graphics, computer vision, and artificial intelligence.
We propose a novel neural scene representation, Light Field Networks or LFNs, which represent both geometry and appearance of the underlying 3D scene in a 360-degree, four-dimensional light field.
Rendering a ray from an LFN requires only a *single* network evaluation, as opposed to hundreds of evaluations per ray for ray-marching or based on volumetrics.
arXiv Detail & Related papers (2021-06-04T17:54:49Z) - Weakly Supervised Learning of Multi-Object 3D Scene Decompositions Using
Deep Shape Priors [69.02332607843569]
PriSMONet is a novel approach for learning Multi-Object 3D scene decomposition and representations from single images.
A recurrent encoder regresses a latent representation of 3D shape, pose and texture of each object from an input RGB image.
We evaluate the accuracy of our model in inferring 3D scene layout, demonstrate its generative capabilities, assess its generalization to real images, and point out benefits of the learned representation.
arXiv Detail & Related papers (2020-10-08T14:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.