Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits
- URL: http://arxiv.org/abs/2006.07862v3
- Date: Mon, 4 Apr 2022 11:02:31 GMT
- Title: Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits
- Authors: Arya Akhavan, Massimiliano Pontil, Alexandre B. Tsybakov
- Abstract summary: We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
- Score: 99.70167985955352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of zero-order optimization of a strongly convex
function. The goal is to find the minimizer of the function by a sequential
exploration of its values, under measurement noise. We study the impact of
higher order smoothness properties of the function on the optimization error
and on the cumulative regret. To solve this problem we consider a randomized
approximation of the projected gradient descent algorithm. The gradient is
estimated by a randomized procedure involving two function evaluations and a
smoothing kernel. We derive upper bounds for this algorithm both in the
constrained and unconstrained settings and prove minimax lower bounds for any
sequential search method. Our results imply that the zero-order algorithm is
nearly optimal in terms of sample complexity and the problem parameters. Based
on this algorithm, we also propose an estimator of the minimum value of the
function achieving almost sharp oracle behavior. We compare our results with
the state-of-the-art, highlighting a number of key improvements.
Related papers
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Ordering for Non-Replacement SGD [7.11967773739707]
We seek to find an ordering that can improve the convergence rates for the non-replacement form of the algorithm.
We develop optimal orderings for constant and decreasing step sizes for strongly convex and convex functions.
In addition, we are able to combine the ordering with mini-batch and further apply it to more complex neural networks.
arXiv Detail & Related papers (2023-06-28T00:46:58Z) - Gradient-free optimization of highly smooth functions: improved analysis
and a new algorithm [87.22224691317766]
This work studies problems with zero-order noisy oracle information under the assumption that the objective function is highly smooth.
We consider two kinds of zero-order projected gradient descent algorithms.
arXiv Detail & Related papers (2023-06-03T17:05:13Z) - Efficient First-order Methods for Convex Optimization with Strongly
Convex Function Constraints [3.667453772837954]
We show how to minimize a convex function subject to strongly convex function constraints.
We identify the sparsity pattern within a finite number result that appears to have independent significance.
arXiv Detail & Related papers (2022-12-21T16:04:53Z) - An Algebraically Converging Stochastic Gradient Descent Algorithm for
Global Optimization [14.336473214524663]
A key component in the algorithm is the randomness based on the value of the objective function.
We prove the convergence of the algorithm with an algebra and tuning in the parameter space.
We present several numerical examples to demonstrate the efficiency and robustness of the algorithm.
arXiv Detail & Related papers (2022-04-12T16:27:49Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.