Exponential Tilting of Generative Models: Improving Sample Quality by
Training and Sampling from Latent Energy
- URL: http://arxiv.org/abs/2006.08100v1
- Date: Mon, 15 Jun 2020 02:58:43 GMT
- Title: Exponential Tilting of Generative Models: Improving Sample Quality by
Training and Sampling from Latent Energy
- Authors: Zhisheng Xiao, Qing Yan, Yali Amit
- Abstract summary: Our method constructs an energy function on the latent variable space that yields an energy function on samples produced by the pre-trained generative model.
We show that using our proposed method, we can greatly improve the sample quality of popular likelihood based generative models.
- Score: 6.767885381740952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a general method that can improve the sample
quality of pre-trained likelihood based generative models. Our method
constructs an energy function on the latent variable space that yields an
energy function on samples produced by the pre-trained generative model. The
energy based model is efficiently trained by maximizing the data likelihood,
and after training, new samples in the latent space are generated from the
energy based model and passed through the generator to producing samples in
observation space. We show that using our proposed method, we can greatly
improve the sample quality of popular likelihood based generative models, such
as normalizing flows and VAEs, with very little computational overhead.
Related papers
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - STANLEY: Stochastic Gradient Anisotropic Langevin Dynamics for Learning
Energy-Based Models [41.031470884141775]
We present an end-to-end learning algorithm for Energy-Based models (EBM)
We propose in this paper, a novel high dimensional sampling method, based on an anisotropic stepsize and a gradient-informed covariance matrix.
Our resulting method, namely STANLEY, is an optimization algorithm for training Energy-Based models via our newly introduced MCMC method.
arXiv Detail & Related papers (2023-10-19T11:55:16Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
Training energy-based models (EBMs) on high-dimensional data can be both challenging and time-consuming.
There exists a noticeable gap in sample quality between EBMs and other generative frameworks like GANs and diffusion models.
We propose cooperative diffusion recovery likelihood (CDRL), an effective approach to tractably learn and sample from a series of EBMs.
arXiv Detail & Related papers (2023-09-10T22:05:24Z) - Balanced Training of Energy-Based Models with Adaptive Flow Sampling [13.951904929884618]
Energy-based models (EBMs) are versatile density estimation models that directly parameterize an unnormalized log density.
We propose a new maximum likelihood training algorithm for EBMs that uses a different type of generative model, normalizing flows (NF)
Our method fits an NF to an EBM during training so that an NF-assisted sampling scheme provides an accurate gradient for the EBMs at all times.
arXiv Detail & Related papers (2023-06-01T13:58:06Z) - Energy-Based Test Sample Adaptation for Domain Generalization [81.04943285281072]
We propose energy-based sample adaptation at test time for domain.
To adapt target samples to source distributions, we iteratively update the samples by energy minimization.
Experiments on six benchmarks for classification of images and microblog threads demonstrate the effectiveness of our proposal.
arXiv Detail & Related papers (2023-02-22T08:55:09Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - Particle Dynamics for Learning EBMs [83.59335980576637]
Energy-based modeling is a promising approach to unsupervised learning, which yields many downstream applications from a single model.
The main difficulty in learning energy-based models with the "contrastive approaches" is the generation of samples from the current energy function at each iteration.
This paper proposes an alternative approach to getting these samples and avoiding crude MCMC sampling from the current model.
arXiv Detail & Related papers (2021-11-26T23:41:07Z) - Controllable and Compositional Generation with Latent-Space Energy-Based
Models [60.87740144816278]
Controllable generation is one of the key requirements for successful adoption of deep generative models in real-world applications.
In this work, we use energy-based models (EBMs) to handle compositional generation over a set of attributes.
By composing energy functions with logical operators, this work is the first to achieve such compositionality in generating photo-realistic images of resolution 1024x1024.
arXiv Detail & Related papers (2021-10-21T03:31:45Z) - Instance Selection for GANs [25.196177369030146]
Generative Adversarial Networks (GANs) have led to their widespread adoption for the purposes of generating high quality synthetic imagery.
GANs often produce unrealistic samples which fall outside of the data manifold.
We propose a novel approach to improve sample quality: altering the training dataset via instance selection before model training has taken place.
arXiv Detail & Related papers (2020-07-30T06:33:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.