GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators
- URL: http://arxiv.org/abs/2006.08265v2
- Date: Mon, 15 Mar 2021 13:54:11 GMT
- Title: GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators
- Authors: Dingfan Chen, Tribhuvanesh Orekondy, Mario Fritz
- Abstract summary: We propose Gradient-sanitized Wasserstein Generative Adrial Networks (GS-WGAN)
GS-WGAN allows releasing a sanitized form of sensitive data with rigorous privacy guarantees.
We find our approach consistently outperforms state-of-the-art approaches across multiple metrics.
- Score: 74.16405337436213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The wide-spread availability of rich data has fueled the growth of machine
learning applications in numerous domains. However, growth in domains with
highly-sensitive data (e.g., medical) is largely hindered as the private nature
of data prohibits it from being shared. To this end, we propose
Gradient-sanitized Wasserstein Generative Adversarial Networks (GS-WGAN), which
allows releasing a sanitized form of the sensitive data with rigorous privacy
guarantees. In contrast to prior work, our approach is able to distort gradient
information more precisely, and thereby enabling training deeper models which
generate more informative samples. Moreover, our formulation naturally allows
for training GANs in both centralized and federated (i.e., decentralized) data
scenarios. Through extensive experiments, we find our approach consistently
outperforms state-of-the-art approaches across multiple metrics (e.g., sample
quality) and datasets.
Related papers
- Privacy-preserving datasets by capturing feature distributions with Conditional VAEs [0.11999555634662634]
Conditional Variational Autoencoders (CVAEs) trained on feature vectors extracted from large pre-trained vision foundation models.
Our method notably outperforms traditional approaches in both medical and natural image domains.
Results underscore the potential of generative models to significantly impact deep learning applications in data-scarce and privacy-sensitive environments.
arXiv Detail & Related papers (2024-08-01T15:26:24Z) - Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data [5.448470199971472]
Deep learning holds immense promise for aiding radiologists in breast cancer detection.
achieving optimal model performance is hampered by limitations in availability and sharing of data.
Traditional deep learning models can inadvertently leak sensitive training information.
This work addresses these challenges exploring quantifying the utility of privacy-preserving deep learning techniques.
arXiv Detail & Related papers (2024-07-17T15:52:45Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
In real-world scenarios, it is common for models to encounter data from new and different domains to which they were not exposed to during training.
domain generalization (DG) is a promising direction as it enables models to handle data from previously unseen domains.
We introduce a novel DG method called Adversarial Intensity Attack (AdverIN), which leverages adversarial training to generate training data with an infinite number of styles.
arXiv Detail & Related papers (2023-04-05T19:40:51Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - imdpGAN: Generating Private and Specific Data with Generative
Adversarial Networks [19.377726080729293]
imdpGAN is an end-to-end framework that simultaneously achieves privacy protection and learns latent representations.
We show that imdpGAN preserves the privacy of the individual data point, and learns latent codes to control the specificity of the generated samples.
arXiv Detail & Related papers (2020-09-29T08:03:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.