Acquisition of Channel State Information for mmWave Massive MIMO:
Traditional and Machine Learning-based Approaches
- URL: http://arxiv.org/abs/2006.08894v2
- Date: Sat, 12 Mar 2022 10:12:15 GMT
- Title: Acquisition of Channel State Information for mmWave Massive MIMO:
Traditional and Machine Learning-based Approaches
- Authors: Chenhao Qi, Peihao Dong, Wenyan Ma, Hua Zhang, Zaichen Zhang and
Geoffrey Ye Li
- Abstract summary: The accuracy of channel state information (CSI) acquisition directly affects the performance of millimeter wave (mmWave) communications.
In this article, we provide an overview on CSI acquisition, including beam training and channel estimation for mmWave massive multiple-input multiple-output systems.
- Score: 48.52099617055683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accuracy of channel state information (CSI) acquisition directly affects
the performance of millimeter wave (mmWave) communications. In this article, we
provide an overview on CSI acquisition, including beam training and channel
estimation for mmWave massive multiple-input multiple-output systems. The beam
training can avoid the estimation of a high-dimension channel matrix while the
channel estimation can flexibly exploit advanced signal processing techniques.
In addition to introducing the traditional and machine learning-based
approaches in this article, we also compare different approaches in terms of
spectral efficiency, computational complexity, and overhead.
Related papers
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - An Efficient Machine Learning-based Channel Prediction Technique for
OFDM Sub-Bands [0.0]
We propose an efficient machine learning (ML)-based technique for channel prediction in OFDM sub-bands.
The novelty of the proposed approach lies in the training of channel fading samples used to estimate future channel behaviour in selective fading.
arXiv Detail & Related papers (2023-05-31T09:41:27Z) - Pay Less But Get More: A Dual-Attention-based Channel Estimation Network
for Massive MIMO Systems with Low-Density Pilots [41.213515826100696]
We propose a dual-attention-based channel estimation network (DACEN) to realize accurate channel estimation via low-density pilots.
Experimental results reveal that the proposed DACEN-based method achieves better channel estimation performance than the existing methods.
arXiv Detail & Related papers (2023-03-02T05:34:25Z) - Deep Generative Models for Downlink Channel Estimation in FDD Massive
MIMO Systems [13.267048706241157]
We propose a deep generative model (DGM)-based technique to address this challenge.
Exploiting the partial reciprocity of uplink and downlink channels, we first estimate the frequency-independent underlying channel parameters.
Then, the frequency-specific underlying channel parameters, namely, the phase of each propagation path, are estimated via downlink training.
arXiv Detail & Related papers (2022-03-09T18:32:10Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Deep Learning-based Beam Tracking for Millimeter-wave Communications
under Mobility [27.62606029014951]
We propose a deep learning-based beam tracking method for millimeter-wave (mmWave)communications.
We employa deep neural network to analyze the temporal structure and patterns underlying in the time-varying channels and the signals acquired by inertial sensors.
Our experimental results demonstrate that the proposed method achieves a significant performance gain over the conventional beam tracking methods under various mobility scenarios.
arXiv Detail & Related papers (2021-02-19T08:05:11Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.