Global Feature Aggregation for Accident Anticipation
- URL: http://arxiv.org/abs/2006.08942v1
- Date: Tue, 16 Jun 2020 06:17:15 GMT
- Title: Global Feature Aggregation for Accident Anticipation
- Authors: Mishal Fatima, Muhammad Umar Karim Khan, and Chong Min Kyung
- Abstract summary: We propose a novel Feature Aggregation (FA) block that refines each object's features by computing a weighted sum of the features of all objects in a frame.
We use FA block along with Long Short Term Memory (LSTM) network to anticipate accidents in the video sequences.
- Score: 8.57961305383434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anticipation of accidents ahead of time in autonomous and non-autonomous
vehicles aids in accident avoidance. In order to recognize abnormal events such
as traffic accidents in a video sequence, it is important that the network
takes into account interactions of objects in a given frame. We propose a novel
Feature Aggregation (FA) block that refines each object's features by computing
a weighted sum of the features of all objects in a frame. We use FA block along
with Long Short Term Memory (LSTM) network to anticipate accidents in the video
sequences. We report mean Average Precision (mAP) and Average Time-to-Accident
(ATTA) on Street Accident (SA) dataset. Our proposed method achieves the
highest score for risk anticipation by predicting accidents 0.32 sec and 0.75
sec earlier compared to the best results with Adaptive Loss and dynamic
parameter prediction based methods respectively.
Related papers
- Real-time Accident Anticipation for Autonomous Driving Through Monocular Depth-Enhanced 3D Modeling [18.071748815365005]
We introduce an innovative framework, AccNet, which significantly advances the prediction capabilities beyond the current state-of-the-art (SOTA) 2D-based methods.
We propose the Binary Adaptive Loss for Early Anticipation (BA-LEA) to address the prevalent challenge of skewed data distribution in traffic accident datasets.
arXiv Detail & Related papers (2024-09-02T13:46:25Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - Abductive Ego-View Accident Video Understanding for Safe Driving
Perception [75.60000661664556]
We present MM-AU, a novel dataset for Multi-Modal Accident video Understanding.
MM-AU contains 11,727 in-the-wild ego-view accident videos, each with temporally aligned text descriptions.
We present an Abductive accident Video understanding framework for Safe Driving perception (AdVersa-SD)
arXiv Detail & Related papers (2024-03-01T10:42:52Z) - A Bi-level Framework for Traffic Accident Duration Prediction:
Leveraging Weather and Road Condition Data within a Practical Optimum
Pipeline [0.5221459608786241]
We gathered accident duration, road conditions, and meteorological data from a database of traffic accidents to check the feasibility of a traffic accident duration pipeline.
Our binary classification random forest model distinguished between short-term and long-term effects with an 83% accuracy rate.
The SHAP value analysis identified weather conditions, wind chill and wind speed as the most influential factors in determining the duration of an accident.
arXiv Detail & Related papers (2023-11-01T16:33:37Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
We propose a large-scale dataset containing diverse accident scenarios that frequently occur in real-world driving.
The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset.
arXiv Detail & Related papers (2023-04-03T17:37:00Z) - Augmenting Ego-Vehicle for Traffic Near-Miss and Accident Classification
Dataset using Manipulating Conditional Style Translation [0.3441021278275805]
There is no difference between accident and near-miss at the time before the accident happened.
Our contribution is to redefine the accident definition and re-annotate the accident inconsistency on DADA-2000 dataset together with near-miss.
The proposed method integrates two different components: conditional style translation (CST) and separable 3-dimensional convolutional neural network (S3D)
arXiv Detail & Related papers (2023-01-06T22:04:47Z) - Cognitive Accident Prediction in Driving Scenes: A Multimodality
Benchmark [77.54411007883962]
We propose a Cognitive Accident Prediction (CAP) method that explicitly leverages human-inspired cognition of text description on the visual observation and the driver attention to facilitate model training.
CAP is formulated by an attentive text-to-vision shift fusion module, an attentive scene context transfer module, and the driver attention guided accident prediction module.
We construct a new large-scale benchmark consisting of 11,727 in-the-wild accident videos with over 2.19 million frames.
arXiv Detail & Related papers (2022-12-19T11:43:02Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - ISSAFE: Improving Semantic Segmentation in Accidents by Fusing
Event-based Data [34.36975697486129]
We present a rarely addressed task regarding semantic segmentation in accidental scenarios, along with an accident dataset DADA-seg.
We propose a novel event-based multi-modal segmentation architecture ISSAFE.
Our approach achieves +8.2% mIoU performance gain on the proposed evaluation set, exceeding more than 10 state-of-the-art segmentation methods.
arXiv Detail & Related papers (2020-08-20T14:03:34Z) - Uncertainty-based Traffic Accident Anticipation with Spatio-Temporal
Relational Learning [30.59728753059457]
Traffic accident anticipation aims to predict accidents from dashcam videos as early as possible.
Current deterministic deep neural networks could be overconfident in false predictions.
We propose an uncertainty-based accident anticipation model with relational-temporal learning.
arXiv Detail & Related papers (2020-08-01T20:21:48Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
We tackle the problem of joint perception and motion forecasting in the context of self-driving vehicles.
We propose Net, an end-to-end model that takes as input sensor data, and outputs at each time step object tracks and their future level.
arXiv Detail & Related papers (2020-05-29T17:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.