Quantum Coherence Resonance
- URL: http://arxiv.org/abs/2006.09203v2
- Date: Fri, 9 Apr 2021 05:09:51 GMT
- Title: Quantum Coherence Resonance
- Authors: Yuzuru Kato, Hiroya Nakao
- Abstract summary: coherence resonance, a phenomenon in which regularity of noise-induced oscillations is maximized at a certain optimal noise intensity, can be observed in quantum dissipative systems.
We show that this second peak of resonance is a strong quantum effect that cannot be interpreted by a semiclassical picture.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is shown that coherence resonance, a phenomenon in which regularity of
noise-induced oscillations in nonlinear excitable systems is maximized at a
certain optimal noise intensity, can be observed in quantum dissipative
systems. We analyze a quantum van der Pol system subjected to squeezing, which
exhibits bistable excitability in the classical limit, by numerical simulations
of the quantum master equation. We first demonstrate that quantum coherence
resonance occurs in the semiclassical regime, namely, the regularity of the
system's oscillatory response is maximized at an optimal intensity of quantum
fluctuations, and interpret this phenomenon by analogy with classical noisy
excitable systems using semiclassical stochastic differential equations. This
resonance persists under moderately strong quantum fluctuations for which the
semiclassical description is invalid. Moreover, we investigate even stronger
quantum regimes and demonstrate that the regularity of the system's response
can exhibit the second peak as the intensity of the quantum fluctuations is
further increased. We show that this second peak of resonance is a strong
quantum effect that cannot be interpreted by a semiclassical picture, in which
only a few energy states participate in the system dynamics.
Related papers
- Quantum coarsening and collective dynamics on a programmable quantum simulator [27.84599956781646]
We experimentally study collective dynamics across a (2+1)D Ising quantum phase transition.
By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries.
We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode.
arXiv Detail & Related papers (2024-07-03T16:29:12Z) - Effective Description of the Quantum Damped Harmonic Oscillator:
Revisiting the Bateman Dual System [0.3495246564946556]
We present a quantization scheme for the damped harmonic oscillator (QDHO) using a framework known as momentous quantum mechanics.
The significance of our study lies in its potential to serve as a foundational basis for the effective description of open quantum systems.
arXiv Detail & Related papers (2023-09-06T03:53:09Z) - Motivating semiclassical gravity: a classical-quantum approximation for
bipartite quantum systems [0.0]
We derive a "classical-quantum" approximation scheme for a broad class of bipartite quantum systems.
In this approximation, one subsystem evolves via classical equations of motion with quantum corrections, and the other subsystem evolves quantum mechanically.
arXiv Detail & Related papers (2023-06-01T18:05:33Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum limit-cycles and the Rayleigh and van der Pol oscillators [0.0]
Self-oscillating systems are emerging as canonical models for driven dissipative nonequilibrium open quantum systems.
We derive an exact analytical solution for the steady-state quantum dynamics of the simplest of these models.
Our solution is a generalization to arbitrary temperature of existing solutions for very-low, or zero, temperature.
arXiv Detail & Related papers (2020-11-05T08:51:51Z) - Hybrid quantum-classical chaotic NEMS [1.224954637705144]
We present an exactly solvable model of a hybrid quantum-classical system of a center spin (quantum spin) coupled to a nanocantilever (classical)
The main problem we focus in this paper is whether the classical chaos may induce chaotic effects in the quantum spin dynamics or not.
arXiv Detail & Related papers (2020-08-19T15:46:38Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Quantum asymptotic phase reveals signatures of quantum synchronization [0.0]
We propose a fully quantum-mechanical definition of the phase, which is a key quantity in the synchronization analysis of classical nonlinear oscillators.
We show that phase locking of the system with a harmonic drive at several different frequencies can be interpreted as synchronization on a torus rather than a simple limit cycle.
arXiv Detail & Related papers (2020-06-01T07:26:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.