Visual Identification of Individual Holstein-Friesian Cattle via Deep
Metric Learning
- URL: http://arxiv.org/abs/2006.09205v3
- Date: Wed, 14 Oct 2020 10:58:30 GMT
- Title: Visual Identification of Individual Holstein-Friesian Cattle via Deep
Metric Learning
- Authors: William Andrew, Jing Gao, Siobhan Mullan, Neill Campbell, Andrew W
Dowsey, Tilo Burghardt
- Abstract summary: Holstein-Friesian cattle exhibit individually-characteristic black and white coat patterns visually akin to those arising from Turing's reaction-diffusion systems.
This work takes advantage of these natural markings in order to automate visual detection and biometric identification of individual Holstein-Friesians via convolutional neural networks and deep metric learning techniques.
- Score: 8.784100314325395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Holstein-Friesian cattle exhibit individually-characteristic black and white
coat patterns visually akin to those arising from Turing's reaction-diffusion
systems. This work takes advantage of these natural markings in order to
automate visual detection and biometric identification of individual
Holstein-Friesians via convolutional neural networks and deep metric learning
techniques. Existing approaches rely on markings, tags or wearables with a
variety of maintenance requirements, whereas we present a totally hands-off
method for the automated detection, localisation, and identification of
individual animals from overhead imaging in an open herd setting, i.e. where
new additions to the herd are identified without re-training. We propose the
use of SoftMax-based reciprocal triplet loss to address the identification
problem and evaluate the techniques in detail against fixed herd paradigms. We
find that deep metric learning systems show strong performance even when many
cattle unseen during system training are to be identified and re-identified --
achieving 93.8% accuracy when trained on just half of the population. This work
paves the way for facilitating the non-intrusive monitoring of cattle
applicable to precision farming and surveillance for automated productivity,
health and welfare monitoring, and to veterinary research such as behavioural
analysis, disease outbreak tracing, and more. Key parts of the source code,
network weights and datasets are available publicly.
Related papers
- MultiCamCows2024 -- A Multi-view Image Dataset for AI-driven Holstein-Friesian Cattle Re-Identification on a Working Farm [2.9391768712283772]
We present MultiCamCows2024, a farm-scale image dataset filmed across multiple cameras for the biometric identification of individual Holstein-Friesian cattle.
The dataset comprises 101, 329 images of 90 cows, plus the underlying original CCTV footage.
We show that our framework enables fully automatic cattle identification, barring only the simple human verification of tracklet integrity.
arXiv Detail & Related papers (2024-10-16T15:58:47Z) - Universal Bovine Identification via Depth Data and Deep Metric Learning [1.6605913858547239]
This paper proposes and evaluates, for the first time, a depth-only deep learning system for accurately identifying individual cattle.
An increase in herd size skews the cow-to-human ratio at the farm and makes the manual monitoring of individuals more challenging.
Underpinned by our previous work, this paper introduces a deep-metric learning method for cattle identification using depth data from an off-the-shelf 3D camera.
arXiv Detail & Related papers (2024-03-29T22:03:53Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Label a Herd in Minutes: Individual Holstein-Friesian Cattle
Identification [12.493458478953515]
We describe a practically evaluated approach for training visual cattle ID systems for a whole farm requiring only ten minutes of labelling effort.
For the task of automatic identification of individual Holstein-Friesians in real-world farm CCTV, we show that self-supervision, metric learning, cluster analysis, and active learning can complement each other.
arXiv Detail & Related papers (2022-04-22T19:41:47Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
We aim to locate and provide a unique identifier for each mouse in a cluttered home-cage environment through time.
This is a very challenging problem due to (i) the lack of distinguishing visual features for each mouse, and (ii) the close confines of the scene with constant occlusion.
Our approach achieves 77% accuracy on this animal identification problem, and is able to reject spurious detections when the animals are hidden.
arXiv Detail & Related papers (2021-12-13T17:11:32Z) - Towards Self-Supervision for Video Identification of Individual
Holstein-Friesian Cattle: The Cows2021 Dataset [10.698921107213554]
We publish the largest identity-annotated Holstein-Friesian cattle dataset Cows2021.
We propose exploiting the temporal coat pattern appearance across videos as a self-supervision signal for animal identity learning.
Results show an accuracy of Top-1 57.0% and Top-4: 76.9% and an Adjusted Rand Index: 0.53 compared to the ground truth.
arXiv Detail & Related papers (2021-05-05T09:08:19Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
We formulate a two-step unsupervised approach that overcomes this challenge by first learning powerful pixel-based features.
Our method produces state-of-the-art results in several challenging landmark detection datasets.
arXiv Detail & Related papers (2021-04-07T05:42:11Z) - Semi-Automatic Data Annotation guided by Feature Space Projection [117.9296191012968]
We present a semi-automatic data annotation approach based on suitable feature space projection and semi-supervised label estimation.
We validate our method on the popular MNIST dataset and on images of human intestinal parasites with and without fecal impurities.
Our results demonstrate the added-value of visual analytics tools that combine complementary abilities of humans and machines for more effective machine learning.
arXiv Detail & Related papers (2020-07-27T17:03:50Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.