Visual Chirality
- URL: http://arxiv.org/abs/2006.09512v1
- Date: Tue, 16 Jun 2020 20:48:23 GMT
- Title: Visual Chirality
- Authors: Zhiqiu Lin, Jin Sun, Abe Davis, Noah Snavely
- Abstract summary: We investigate how statistics of visual data are changed by reflection.
Our work has implications for data augmentation, self-supervised learning, and image forensics.
- Score: 51.685596116645776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How can we tell whether an image has been mirrored? While we understand the
geometry of mirror reflections very well, less has been said about how it
affects distributions of imagery at scale, despite widespread use for data
augmentation in computer vision. In this paper, we investigate how the
statistics of visual data are changed by reflection. We refer to these changes
as "visual chirality", after the concept of geometric chirality - the notion of
objects that are distinct from their mirror image. Our analysis of visual
chirality reveals surprising results, including low-level chiral signals
pervading imagery stemming from image processing in cameras, to the ability to
discover visual chirality in images of people and faces. Our work has
implications for data augmentation, self-supervised learning, and image
forensics.
Related papers
- When Does Perceptual Alignment Benefit Vision Representations? [76.32336818860965]
We investigate how aligning vision model representations to human perceptual judgments impacts their usability.
We find that aligning models to perceptual judgments yields representations that improve upon the original backbones across many downstream tasks.
Our results suggest that injecting an inductive bias about human perceptual knowledge into vision models can contribute to better representations.
arXiv Detail & Related papers (2024-10-14T17:59:58Z) - For a semiotic AI: Bridging computer vision and visual semiotics for computational observation of large scale facial image archives [3.418398936676879]
This work presents FRESCO, a framework designed to explore the socio-cultural implications of images on social media platforms at scale.
FRESCO deconstructs images into numerical and categorical variables using state-of-the-art computer vision techniques.
The framework analyzes images across three levels: the plastic level, encompassing fundamental visual features like lines and colors; the figurative level, representing specific entities or concepts; and the enunciation level, which focuses particularly on constructing the point of view of the spectator and observer.
arXiv Detail & Related papers (2024-07-03T16:57:38Z) - DreamSim: Learning New Dimensions of Human Visual Similarity using
Synthetic Data [43.247597420676044]
Current perceptual similarity metrics operate at the level of pixels and patches.
These metrics compare images in terms of their low-level colors and textures, but fail to capture mid-level similarities and differences in image layout, object pose, and semantic content.
We develop a perceptual metric that assesses images holistically.
arXiv Detail & Related papers (2023-06-15T17:59:50Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
Deep convolutional neural networks (CNNs) have been shown to provide excellent models for its functional analogue in the brain, the ventral stream in visual cortex.
Here we consider some prominent statistical patterns that are known to exist in the internal representations of either CNNs or the visual cortex.
We show that CNNs and visual cortex share a similarly tight relationship between dimensionality expansion/reduction of object representations and reformatting of image information.
arXiv Detail & Related papers (2022-05-27T08:06:40Z) - LFW-Beautified: A Dataset of Face Images with Beautification and
Augmented Reality Filters [53.180678723280145]
We contribute with a database of facial images that includes several manipulations.
It includes image enhancement filters (which mostly modify contrast and lightning) and augmented reality filters that incorporate items like animal noses or glasses.
Each dataset contains 4,324 images of size 64 x 64, with a total of 34,592 images.
arXiv Detail & Related papers (2022-03-11T17:05:10Z) - Dissecting Image Crops [22.482090207522358]
The elementary operation of cropping underpins nearly every computer vision system.
This paper investigates the subtle traces introduced by this operation.
We study how to detect these traces, and investigate the impact that cropping has on the image distribution.
arXiv Detail & Related papers (2020-11-24T01:33:47Z) - Unsupervised Deep Metric Learning with Transformed Attention Consistency
and Contrastive Clustering Loss [28.17607283348278]
Existing approaches for unsupervised metric learning focus on exploring self-supervision information within the input image itself.
We observe that, when analyzing images, human eyes often compare images against each other instead of examining images individually.
We develop a new approach to unsupervised deep metric learning where the network is learned based on self-supervision information across images.
arXiv Detail & Related papers (2020-08-10T19:33:47Z) - Unsupervised Landmark Learning from Unpaired Data [117.81440795184587]
Recent attempts for unsupervised landmark learning leverage synthesized image pairs that are similar in appearance but different in poses.
We propose a cross-image cycle consistency framework which applies the swapping-reconstruction strategy twice to obtain the final supervision.
Our proposed framework is shown to outperform strong baselines by a large margin.
arXiv Detail & Related papers (2020-06-29T13:57:20Z) - Geometrically Mappable Image Features [85.81073893916414]
Vision-based localization of an agent in a map is an important problem in robotics and computer vision.
We propose a method that learns image features targeted for image-retrieval-based localization.
arXiv Detail & Related papers (2020-03-21T15:36:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.