Logic, Probability and Action: A Situation Calculus Perspective
- URL: http://arxiv.org/abs/2006.09868v1
- Date: Wed, 17 Jun 2020 13:49:53 GMT
- Title: Logic, Probability and Action: A Situation Calculus Perspective
- Authors: Vaishak Belle
- Abstract summary: The unification of logic and probability is a long-standing concern in AI.
We explore recent results pertaining to the integration of logic, probability and actions in the situation calculus.
Results are motivated in the context of cognitive robotics.
- Score: 12.47276164048813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The unification of logic and probability is a long-standing concern in AI,
and more generally, in the philosophy of science. In essence, logic provides an
easy way to specify properties that must hold in every possible world, and
probability allows us to further quantify the weight and ratio of the worlds
that must satisfy a property. To that end, numerous developments have been
undertaken, culminating in proposals such as probabilistic relational models.
While this progress has been notable, a general-purpose first-order knowledge
representation language to reason about probabilities and dynamics, including
in continuous settings, is still to emerge. In this paper, we survey recent
results pertaining to the integration of logic, probability and actions in the
situation calculus, which is arguably one of the oldest and most well-known
formalisms. We then explore reduction theorems and programming interfaces for
the language. These results are motivated in the context of cognitive robotics
(as envisioned by Reiter and his colleagues) for the sake of concreteness.
Overall, the advantage of proving results for such a general language is that
it becomes possible to adapt them to any special-purpose fragment, including
but not limited to popular probabilistic relational models.
Related papers
- QUITE: Quantifying Uncertainty in Natural Language Text in Bayesian Reasoning Scenarios [15.193544498311603]
We present QUITE, a dataset of real-world Bayesian reasoning scenarios with categorical random variables and complex relationships.
We conduct an extensive set of experiments, finding that logic-based models outperform out-of-the-box large language models on all reasoning types.
Our results provide evidence that neuro-symbolic models are a promising direction for improving complex reasoning.
arXiv Detail & Related papers (2024-10-14T12:44:59Z) - A Semantic Approach to Decidability in Epistemic Planning (Extended
Version) [72.77805489645604]
We use a novel semantic approach to achieve decidability.
Specifically, we augment the logic of knowledge S5$_n$ and with an interaction axiom called (knowledge) commutativity.
We prove that our framework admits a finitary non-fixpoint characterization of common knowledge, which is of independent interest.
arXiv Detail & Related papers (2023-07-28T11:26:26Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
We propose rational meaning construction, a computational framework for language-informed thinking.
We frame linguistic meaning as a context-sensitive mapping from natural language into a probabilistic language of thought.
We show that LLMs can generate context-sensitive translations that capture pragmatically-appropriate linguistic meanings.
We extend our framework to integrate cognitively-motivated symbolic modules.
arXiv Detail & Related papers (2023-06-22T05:14:00Z) - The Hardness of Reasoning about Probabilities and Causality [5.190207094732672]
We study languages capable of expressing quantitative probabilistic reasoning and do-calculus reasoning for causal effects.
The main contribution of this work is establishing the exact computational complexity of satisfiability problems.
We introduce a new natural complexity class, named succ$exists$R, which can be viewed as a succinct variant of the well-studied class $exists$R.
arXiv Detail & Related papers (2023-05-16T15:01:22Z) - $\omega$PAP Spaces: Reasoning Denotationally About Higher-Order,
Recursive Probabilistic and Differentiable Programs [64.25762042361839]
$omega$PAP spaces are spaces for reasoning denotationally about expressive differentiable and probabilistic programming languages.
Our semantics is general enough to assign meanings to most practical probabilistic and differentiable programs.
We establish the almost-everywhere differentiability of probabilistic programs' trace density functions.
arXiv Detail & Related papers (2023-02-21T12:50:05Z) - VAEL: Bridging Variational Autoencoders and Probabilistic Logic
Programming [3.759936323189418]
We present VAEL, a neuro-symbolic generative model integrating variational autoencoders (VAE) with the reasoning capabilities of probabilistic logic (L) programming.
arXiv Detail & Related papers (2022-02-07T10:16:53Z) - Logical Credal Networks [87.25387518070411]
This paper introduces Logical Credal Networks, an expressive probabilistic logic that generalizes many prior models that combine logic and probability.
We investigate its performance on maximum a posteriori inference tasks, including solving Mastermind games with uncertainty and detecting credit card fraud.
arXiv Detail & Related papers (2021-09-25T00:00:47Z) - Non-ground Abductive Logic Programming with Probabilistic Integrity
Constraints [2.624902795082451]
In this paper, we consider a richer logic language, coping with probabilistic abduction with variables.
We first present the overall abductive language, and its semantics according to the Distribution Semantics.
We then introduce a proof procedure, obtained by extending one previously presented, and prove its soundness and completeness.
arXiv Detail & Related papers (2021-08-06T10:22:12Z) - Abstract Spatial-Temporal Reasoning via Probabilistic Abduction and
Execution [97.50813120600026]
Spatial-temporal reasoning is a challenging task in Artificial Intelligence (AI)
Recent works have focused on an abstract reasoning task of this kind -- Raven's Progressive Matrices ( RPM)
We propose a neuro-symbolic Probabilistic Abduction and Execution learner (PrAE) learner.
arXiv Detail & Related papers (2021-03-26T02:42:18Z) - Logical Neural Networks [51.46602187496816]
We propose a novel framework seamlessly providing key properties of both neural nets (learning) and symbolic logic (knowledge and reasoning)
Every neuron has a meaning as a component of a formula in a weighted real-valued logic, yielding a highly intepretable disentangled representation.
Inference is omni rather than focused on predefined target variables, and corresponds to logical reasoning.
arXiv Detail & Related papers (2020-06-23T16:55:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.