Adversarially Trained Multi-Singer Sequence-To-Sequence Singing
Synthesizer
- URL: http://arxiv.org/abs/2006.10317v1
- Date: Thu, 18 Jun 2020 07:20:11 GMT
- Title: Adversarially Trained Multi-Singer Sequence-To-Sequence Singing
Synthesizer
- Authors: Jie Wu, Jian Luan
- Abstract summary: We design a multi-singer framework to leverage all the existing singing data of different singers.
We incorporate an adversarial task of singer classification to make encoder output less singer dependent.
The proposed synthesizer can generate higher quality singing voice than baseline.
- Score: 11.598416444452619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a high quality singing synthesizer that is able to model
a voice with limited available recordings. Based on the sequence-to-sequence
singing model, we design a multi-singer framework to leverage all the existing
singing data of different singers. To attenuate the issue of musical score
unbalance among singers, we incorporate an adversarial task of singer
classification to make encoder output less singer dependent. Furthermore, we
apply multiple random window discriminators (MRWDs) on the generated acoustic
features to make the network be a GAN. Both objective and subjective
evaluations indicate that the proposed synthesizer can generate higher quality
singing voice than baseline (4.12 vs 3.53 in MOS). Especially, the articulation
of high-pitched vowels is significantly enhanced.
Related papers
- ConSinger: Efficient High-Fidelity Singing Voice Generation with Minimal Steps [4.319804315515349]
We propose a singing voice synthesis method based on the consistency model, ConSinger, to achieve high-fidelity singing voice synthesis with minimal steps.
Our experiments show that ConSinger is highly competitive with the baseline model in terms of generation speed and quality.
arXiv Detail & Related papers (2024-10-20T09:32:03Z) - Prompt-Singer: Controllable Singing-Voice-Synthesis with Natural Language Prompt [50.25271407721519]
We propose Prompt-Singer, the first SVS method that enables attribute controlling on singer gender, vocal range and volume with natural language.
We adopt a model architecture based on a decoder-only transformer with a multi-scale hierarchy, and design a range-melody decoupled pitch representation.
Experiments show that our model achieves favorable controlling ability and audio quality.
arXiv Detail & Related papers (2024-03-18T13:39:05Z) - Singer Identity Representation Learning using Self-Supervised Techniques [0.0]
We propose a framework for training singer identity encoders to extract representations suitable for various singing-related tasks.
We explore different self-supervised learning techniques on a large collection of isolated vocal tracks.
We evaluate the quality of the resulting representations on singer similarity and identification tasks.
arXiv Detail & Related papers (2024-01-10T10:41:38Z) - StyleSinger: Style Transfer for Out-of-Domain Singing Voice Synthesis [63.18764165357298]
Style transfer for out-of-domain singing voice synthesis (SVS) focuses on generating high-quality singing voices with unseen styles.
StyleSinger is the first singing voice synthesis model for zero-shot style transfer of out-of-domain reference singing voice samples.
Our evaluations in zero-shot style transfer undeniably establish that StyleSinger outperforms baseline models in both audio quality and similarity to the reference singing voice samples.
arXiv Detail & Related papers (2023-12-17T15:26:16Z) - Enhancing the vocal range of single-speaker singing voice synthesis with
melody-unsupervised pre-training [82.94349771571642]
This work proposes a melody-unsupervised multi-speaker pre-training method to enhance the vocal range of the single-speaker.
It is the first to introduce a differentiable duration regulator to improve the rhythm naturalness of the synthesized voice.
Experimental results verify that the proposed SVS system outperforms the baseline on both sound quality and naturalness.
arXiv Detail & Related papers (2023-09-01T06:40:41Z) - Towards Improving the Expressiveness of Singing Voice Synthesis with
BERT Derived Semantic Information [51.02264447897833]
This paper presents an end-to-end high-quality singing voice synthesis (SVS) system that uses bidirectional encoder representation from Transformers (BERT) derived semantic embeddings.
The proposed SVS system can produce singing voice with higher-quality outperforming VISinger.
arXiv Detail & Related papers (2023-08-31T16:12:01Z) - Robust One-Shot Singing Voice Conversion [28.707278256253385]
High-quality singing voice conversion (SVC) of unseen singers remains challenging due to wide variety of musical expressions in pitch, loudness, and pronunciation.
We present a robust one-shot SVC that performs any-to-any SVC robustly even on distorted singing voices.
Experimental results show that the proposed method outperforms state-of-the-art one-shot SVC baselines for both seen and unseen singers.
arXiv Detail & Related papers (2022-10-20T08:47:35Z) - Sinsy: A Deep Neural Network-Based Singing Voice Synthesis System [25.573552964889963]
This paper presents Sinsy, a deep neural network (DNN)-based singing voice synthesis (SVS) system.
The proposed system is composed of four modules: a time-lag model, a duration model, an acoustic model, and a vocoder.
Experimental results show our system can synthesize a singing voice with better timing, more natural vibrato, and correct pitch.
arXiv Detail & Related papers (2021-08-05T17:59:58Z) - DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis [53.19363127760314]
DiffSinger is a parameterized Markov chain which iteratively converts the noise into mel-spectrogram conditioned on the music score.
The evaluations conducted on the Chinese singing dataset demonstrate that DiffSinger outperforms state-of-the-art SVS work with a notable margin.
arXiv Detail & Related papers (2021-05-06T05:21:42Z) - DeepSinger: Singing Voice Synthesis with Data Mined From the Web [194.10598657846145]
DeepSinger is a multi-lingual singing voice synthesis system built from scratch using singing training data mined from music websites.
We evaluate DeepSinger on our mined singing dataset that consists of about 92 hours data from 89 singers on three languages.
arXiv Detail & Related papers (2020-07-09T07:00:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.