SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
- URL: http://arxiv.org/abs/2006.10503v3
- Date: Tue, 24 Nov 2020 19:03:03 GMT
- Title: SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
- Authors: Fabian B. Fuchs, Daniel E. Worrall, Volker Fischer, Max Welling
- Abstract summary: We introduce the SE(3)-Transformer, a variant of the self-attention module for 3D point clouds and graphs, which is equivariant under continuous 3D roto-translations.
We evaluate our model on a toy N-body particle simulation dataset, showcasing the robustness of the predictions under rotations of the input.
- Score: 71.55002934935473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the SE(3)-Transformer, a variant of the self-attention module
for 3D point clouds and graphs, which is equivariant under continuous 3D
roto-translations. Equivariance is important to ensure stable and predictable
performance in the presence of nuisance transformations of the data input. A
positive corollary of equivariance is increased weight-tying within the model.
The SE(3)-Transformer leverages the benefits of self-attention to operate on
large point clouds and graphs with varying number of points, while guaranteeing
SE(3)-equivariance for robustness. We evaluate our model on a toy N-body
particle simulation dataset, showcasing the robustness of the predictions under
rotations of the input. We further achieve competitive performance on two
real-world datasets, ScanObjectNN and QM9. In all cases, our model outperforms
a strong, non-equivariant attention baseline and an equivariant model without
attention.
Related papers
- 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction [50.07071392673984]
Existing methods learn 3D rotations parametrized in the spatial domain using angles or quaternions.
We propose a frequency-domain approach that directly predicts Wigner-D coefficients for 3D rotation regression.
Our method achieves state-of-the-art results on benchmarks such as ModelNet10-SO(3) and PASCAL3D+.
arXiv Detail & Related papers (2024-11-01T12:50:38Z) - Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration [2.814748676983944]
We propose a graph neural network model embedded with a local Spherical Euclidean 3D equivariance property through SE(3) message passing based propagation.
Our model is composed mainly of a descriptor module, equivariant graph layers, match similarity, and the final regression layers.
Experiments conducted on the 3DMatch and KITTI datasets exhibit the compelling and robust performance of our model compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-08T06:48:01Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Equivariant Spatio-Temporal Self-Supervision for LiDAR Object Detection [37.142470149311904]
We propose atemporal equivariant learning framework by considering both spatial and temporal augmentations jointly.
We show our pre-training method for 3D object detection which outperforms existing equivariant and invariant approaches in many settings.
arXiv Detail & Related papers (2024-04-17T20:41:49Z) - Transformers meet Stochastic Block Models: Attention with Data-Adaptive
Sparsity and Cost [53.746169882193456]
Recent works have proposed various sparse attention modules to overcome the quadratic cost of self-attention.
We propose a model that resolves both problems by endowing each attention head with a mixed-membership Block Model.
Our model outperforms previous efficient variants as well as the original Transformer with full attention.
arXiv Detail & Related papers (2022-10-27T15:30:52Z) - Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
Graphs [3.0603554929274908]
3D-related inductive biases are indispensable to graph neural networks operating on 3D atomistic graphs such as molecules.
Inspired by the success of Transformers in various domains, we study how to incorporate these inductive biases into Transformers.
We present Equiformer, a graph neural network leveraging the strength of Transformer architectures.
arXiv Detail & Related papers (2022-06-23T21:40:37Z) - VN-Transformer: Rotation-Equivariant Attention for Vector Neurons [13.027392571994204]
We introduce a novel "VN-Transformer" architecture to address several shortcomings of the current VN models.
We apply our VN-Transformer to 3D shape classification and motion forecasting with compelling results.
arXiv Detail & Related papers (2022-06-08T21:48:47Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
The intuition of this work is to perceive the geometric inconsistency between the given meshes with the powerful self-attention mechanism.
We propose a novel geometry-contrastive Transformer that has an efficient 3D structured perceiving ability to the global geometric inconsistencies.
We present a latent isometric regularization module together with a novel semi-synthesized dataset for the cross-dataset 3D pose transfer task.
arXiv Detail & Related papers (2021-12-14T13:14:24Z) - Equivariant Point Network for 3D Point Cloud Analysis [17.689949017410836]
We propose an effective and practical SE(3) (3D translation and rotation) equivariant network for point cloud analysis.
First, we present SE(3) separable point convolution, a novel framework that breaks down the 6D convolution into two separable convolutional operators.
Second, we introduce an attention layer to effectively harness the expressiveness of the equivariant features.
arXiv Detail & Related papers (2021-03-25T21:57:10Z) - Adjoint Rigid Transform Network: Task-conditioned Alignment of 3D Shapes [86.2129580231191]
Adjoint Rigid Transform (ART) Network is a neural module which can be integrated with a variety of 3D networks.
ART learns to rotate input shapes to a learned canonical orientation, which is crucial for a lot of tasks.
We will release our code and pre-trained models for further research.
arXiv Detail & Related papers (2021-02-01T20:58:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.