Semi-Discriminative Representation Loss for Online Continual Learning
- URL: http://arxiv.org/abs/2006.11234v4
- Date: Thu, 14 Apr 2022 11:01:59 GMT
- Title: Semi-Discriminative Representation Loss for Online Continual Learning
- Authors: Yu Chen, Tom Diethe, Peter Flach
- Abstract summary: gradient-based approaches have been developed to make more efficient use of compact episodic memory.
We propose a simple method -- Semi-Discriminative Representation Loss (SDRL) -- for continual learning.
- Score: 16.414031859647874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of episodic memory in continual learning has demonstrated
effectiveness for alleviating catastrophic forgetting. In recent studies,
gradient-based approaches have been developed to make more efficient use of
compact episodic memory. Such approaches refine the gradients resulting from
new samples by those from memorized samples, aiming to reduce the diversity of
gradients from different tasks. In this paper, we clarify the relation between
diversity of gradients and discriminativeness of representations, showing
shared as well as conflicting interests between Deep Metric Learning and
continual learning, thus demonstrating pros and cons of learning discriminative
representations in continual learning. Based on these findings, we propose a
simple method -- Semi-Discriminative Representation Loss (SDRL) -- for
continual learning. In comparison with state-of-the-art methods, SDRL shows
better performance with low computational cost on multiple benchmark tasks in
the setting of online continual learning.
Related papers
- Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning [42.14439854721613]
We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL) tailored specifically for class-incremental learning scenarios.
Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique.
arXiv Detail & Related papers (2024-05-17T19:49:02Z) - On the Convergence of Continual Learning with Adaptive Methods [4.351356718501137]
We propose an adaptive sequential method for non continual learning (NCCL)
We demonstrate that the proposed method improves the performance of continual learning existing methods for several image classification tasks.
arXiv Detail & Related papers (2024-04-08T14:28:27Z) - Contrastive Continual Learning with Importance Sampling and
Prototype-Instance Relation Distillation [14.25441464051506]
We propose Contrastive Continual Learning via Importance Sampling (CCLIS) to preserve knowledge by recovering previous data distributions.
We also present the Prototype-instance Relation Distillation (PRD) loss, a technique designed to maintain the relationship between prototypes and sample representations.
arXiv Detail & Related papers (2024-03-07T15:47:52Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
We propose a novel contrastive learning framework to address the challenges of data heterogeneity in federated learning.
Our framework outperforms all existing federated learning approaches by huge margins on the standard benchmarks.
arXiv Detail & Related papers (2024-01-10T04:55:24Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
Contrastive self-supervised learning has been successfully integrated into the practice of (deep) reinforcement learning (RL)
We study how RL can be empowered by contrastive learning in a class of Markov decision processes (MDPs) and Markov games (MGs) with low-rank transitions.
Under the online setting, we propose novel upper confidence bound (UCB)-type algorithms that incorporate such a contrastive loss with online RL algorithms for MDPs or MGs.
arXiv Detail & Related papers (2022-07-29T17:29:08Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Spatial Contrastive Learning for Few-Shot Classification [9.66840768820136]
We propose a novel attention-based spatial contrastive objective to learn locally discriminative and class-agnostic features.
With extensive experiments, we show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-12-26T23:39:41Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z) - Disentangling Adaptive Gradient Methods from Learning Rates [65.0397050979662]
We take a deeper look at how adaptive gradient methods interact with the learning rate schedule.
We introduce a "grafting" experiment which decouples an update's magnitude from its direction.
We present some empirical and theoretical retrospectives on the generalization of adaptive gradient methods.
arXiv Detail & Related papers (2020-02-26T21:42:49Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.