Stochastic Shortest Path with Adversarially Changing Costs
- URL: http://arxiv.org/abs/2006.11561v4
- Date: Tue, 5 Apr 2022 10:29:29 GMT
- Title: Stochastic Shortest Path with Adversarially Changing Costs
- Authors: Aviv Rosenberg and Yishay Mansour
- Abstract summary: shortest path (SSP) is a well-known problem in planning and control.
We present the adversarial SSP model that also accounts for adversarial changes in the costs over time.
We are the first to consider this natural setting of adversarial SSP and obtain sub-linear regret for it.
- Score: 57.90236104782219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic shortest path (SSP) is a well-known problem in planning and
control, in which an agent has to reach a goal state in minimum total expected
cost. In this paper we present the adversarial SSP model that also accounts for
adversarial changes in the costs over time, while the underlying transition
function remains unchanged. Formally, an agent interacts with an SSP
environment for $K$ episodes, the cost function changes arbitrarily between
episodes, and the transitions are unknown to the agent. We develop the first
algorithms for adversarial SSPs and prove high probability regret bounds of
$\widetilde O (\sqrt{K})$ assuming all costs are strictly positive, and
$\widetilde O (K^{3/4})$ in the general case. We are the first to consider this
natural setting of adversarial SSP and obtain sub-linear regret for it.
Related papers
- Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit
Feedback and Unknown Transition [71.33787410075577]
We study reinforcement learning with linear function approximation, unknown transition, and adversarial losses.
We propose a new algorithm that attains an $widetildeO(dsqrtHS3K + sqrtHSAK)$ regret with high probability.
arXiv Detail & Related papers (2024-03-07T15:03:50Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Stochastic Shortest Path: Minimax, Parameter-Free and Towards
Horizon-Free Regret [144.6358229217845]
We study the problem of learning in the shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state.
We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus.
We prove that EB-SSP achieves the minimax regret rate $widetildeO(B_star sqrtS A K)$, where $K$ is the number of episodes, $S$ is the number of states, $A$
arXiv Detail & Related papers (2021-04-22T17:20:48Z) - Minimax Regret for Stochastic Shortest Path [63.45407095296692]
We study the Shortest Path (SSP) problem in which an agent has to reach a goal state in minimum total expected cost.
We show that the minimax regret for this setting is $widetilde O(B_star sqrt|S| |A| K)$ where $B_star$ is a bound on the expected cost of the optimal policy from any state.
Our algorithm runs in-time per episode, and is based on a novel reduction to reinforcement learning in finite-horizon MDPs.
arXiv Detail & Related papers (2021-03-24T10:11:49Z) - Finding the Stochastic Shortest Path with Low Regret: The Adversarial
Cost and Unknown Transition Case [29.99619764839178]
We make significant progress toward the shortest path problem with adversarial costs and unknown transition.
Specifically, we develop algorithms that achieve $widetildeO(sqrtS3A2DT_star K)$ regret for the full-information setting.
We are also the first to consider the most challenging combination: bandit feedback with adversarial costs and unknown transition.
arXiv Detail & Related papers (2021-02-10T06:33:04Z) - Minimax Regret for Stochastic Shortest Path with Adversarial Costs and
Known Transition [37.6975819766632]
We study the shortest path problem with adversarial costs and known transition.
We show that the minimax regret is $widetildeO(sqrtDTstar K)$ and $widetildeO(sqrtDTstar SA K)$ for the full-information setting and the bandit feedback setting.
arXiv Detail & Related papers (2020-12-07T20:55:28Z) - Near-optimal Regret Bounds for Stochastic Shortest Path [63.029132134792555]
shortest path (SSP) is a well-known problem in planning and control, in which an agent has to reach a goal state in minimum total expected cost.
We show that any learning algorithm must have at least $Omega(B_star sqrt|S| |A| K)$ regret in the worst case.
arXiv Detail & Related papers (2020-02-23T09:10:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.