Graph Neural Networks and Reinforcement Learning for Behavior Generation
in Semantic Environments
- URL: http://arxiv.org/abs/2006.12576v1
- Date: Mon, 22 Jun 2020 19:24:52 GMT
- Title: Graph Neural Networks and Reinforcement Learning for Behavior Generation
in Semantic Environments
- Authors: Patrick Hart, Alois Knoll
- Abstract summary: We propose combining graph neural networks with actor-critic reinforcement learning.
As graph neural networks apply the same network to every vehicle, they are invariant to the number and order of vehicles.
We show that graph neural networks are capable of handling scenarios with a varying number and order of vehicles during training and application.
- Score: 3.1410342959104725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most reinforcement learning approaches used in behavior generation utilize
vectorial information as input. However, this requires the network to have a
pre-defined input-size -- in semantic environments this means assuming the
maximum number of vehicles. Additionally, this vectorial representation is not
invariant to the order and number of vehicles. To mitigate the above-stated
disadvantages, we propose combining graph neural networks with actor-critic
reinforcement learning. As graph neural networks apply the same network to
every vehicle and aggregate incoming edge information, they are invariant to
the number and order of vehicles. This makes them ideal candidates to be used
as networks in semantic environments -- environments consisting of objects
lists. Graph neural networks exhibit some other advantages that make them
favorable to be used in semantic environments. The relational information is
explicitly given and does not have to be inferred. Moreover, graph neural
networks propagate information through the network and can gather higher-degree
information. We demonstrate our approach using a highway lane-change scenario
and compare the performance of graph neural networks to conventional ones. We
show that graph neural networks are capable of handling scenarios with a
varying number and order of vehicles during training and application.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Infinite Width Graph Neural Networks for Node Regression/ Classification [0.0]
This work analyzes Graph Neural Networks, a generalization of Fully-Connected Deep Neural Nets on Graph structured data, when their width, that is the number of nodes in each fullyconnected layer is increasing to infinity.
arXiv Detail & Related papers (2023-10-12T10:01:39Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - Learning through structure: towards deep neuromorphic knowledge graph
embeddings [0.5906031288935515]
We propose a strategy to map deep graph learning architectures for knowledge graph reasoning to neuromorphic architectures.
Based on the insight that randomly and untrained graph neural networks are able to preserve local graph structures, we compose a frozen neural network shallow knowledge graph embedding models.
We experimentally show that already on conventional computing hardware, this leads to a significant speedup and memory reduction while maintaining a competitive performance level.
arXiv Detail & Related papers (2021-09-21T18:01:04Z) - Learning Graph Representations [0.0]
Graph Neural Networks (GNNs) are efficient ways to get insight into large dynamic graph datasets.
In this paper, we discuss the graph convolutional neural networks graph autoencoders and Social-temporal graph neural networks.
arXiv Detail & Related papers (2021-02-03T12:07:55Z) - ItNet: iterative neural networks with small graphs for accurate and
efficient anytime prediction [1.52292571922932]
In this study, we introduce a class of network models that have a small memory footprint in terms of their computational graphs.
We show state-of-the-art results for semantic segmentation on the CamVid and Cityscapes datasets.
arXiv Detail & Related papers (2021-01-21T15:56:29Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points.
We propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion.
arXiv Detail & Related papers (2020-11-14T11:09:51Z) - Graph Structure of Neural Networks [104.33754950606298]
We show how the graph structure of neural networks affect their predictive performance.
A "sweet spot" of relational graphs leads to neural networks with significantly improved predictive performance.
Top-performing neural networks have graph structure surprisingly similar to those of real biological neural networks.
arXiv Detail & Related papers (2020-07-13T17:59:31Z) - How hard is to distinguish graphs with graph neural networks? [32.09819774228997]
This study derives hardness results for the classification variant of graph isomorphism in the message-passing model (MPNN)
MPNN encompasses the majority of graph neural networks used today and is universal when nodes are given unique features.
An empirical study involving 12 graph classification tasks and 420 networks reveals strong alignment between actual performance and theoretical predictions.
arXiv Detail & Related papers (2020-05-13T22:28:46Z) - Analyzing Neural Networks Based on Random Graphs [77.34726150561087]
We perform a massive evaluation of neural networks with architectures corresponding to random graphs of various types.
We find that none of the classical numerical graph invariants by itself allows to single out the best networks.
We also find that networks with primarily short-range connections perform better than networks which allow for many long-range connections.
arXiv Detail & Related papers (2020-02-19T11:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.