Post-DAE: Anatomically Plausible Segmentation via Post-Processing with
Denoising Autoencoders
- URL: http://arxiv.org/abs/2006.13791v1
- Date: Wed, 24 Jun 2020 15:05:03 GMT
- Title: Post-DAE: Anatomically Plausible Segmentation via Post-Processing with
Denoising Autoencoders
- Authors: Agostina J Larrazabal and C\'esar Mart\'inez and Ben Glocker and Enzo
Ferrante
- Abstract summary: Post-DAE is a post-processing method based on denoising autoencoders (DAE)
We show how erroneous and noisy segmentation masks can be improved using Post-DAE.
- Score: 19.361024564220454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Post-DAE, a post-processing method based on denoising
autoencoders (DAE) to improve the anatomical plausibility of arbitrary
biomedical image segmentation algorithms. Some of the most popular segmentation
methods (e.g. based on convolutional neural networks or random forest
classifiers) incorporate additional post-processing steps to ensure that the
resulting masks fulfill expected connectivity constraints. These methods
operate under the hypothesis that contiguous pixels with similar aspect should
belong to the same class. Even if valid in general, this assumption does not
consider more complex priors like topological restrictions or convexity, which
cannot be easily incorporated into these methods. Post-DAE leverages the latest
developments in manifold learning via denoising autoencoders. First, we learn a
compact and non-linear embedding that represents the space of anatomically
plausible segmentations. Then, given a segmentation mask obtained with an
arbitrary method, we reconstruct its anatomically plausible version by
projecting it onto the learnt manifold. The proposed method is trained using
unpaired segmentation mask, what makes it independent of intensity information
and image modality. We performed experiments in binary and multi-label
segmentation of chest X-ray and cardiac magnetic resonance images. We show how
erroneous and noisy segmentation masks can be improved using Post-DAE. With
almost no additional computation cost, our method brings erroneous
segmentations back to a feasible space.
Related papers
- Train-Free Segmentation in MRI with Cubical Persistent Homology [0.0]
We describe a new general method for segmentation in MRI scans using Topological Data Analysis (TDA)
It works in three steps, first identifying the whole object to segment via automatic thresholding, then detecting a distinctive subset whose topology is known in advance, and finally deducing the various components of the segmentation.
We study the examples of glioblastoma segmentation in brain MRI, where a sphere is to be detected, as well as myocardium in cardiac MRI, involving a cylinder, and cortical plate detection in fetal brain MRI, whose 2D slices are circles.
arXiv Detail & Related papers (2024-01-02T11:43:49Z) - SegRefiner: Towards Model-Agnostic Segmentation Refinement with Discrete
Diffusion Process [102.18226145874007]
We propose a model-agnostic solution called SegRefiner to enhance the quality of object masks produced by different segmentation models.
SegRefiner takes coarse masks as inputs and refines them using a discrete diffusion process.
It consistently improves both the segmentation metrics and boundary metrics across different types of coarse masks.
arXiv Detail & Related papers (2023-12-19T18:53:47Z) - Morphologically-Aware Consensus Computation via Heuristics-based
IterATive Optimization (MACCHIatO) [1.8749305679160362]
We propose a new method to construct a binary or a probabilistic consensus segmentation based on the Fr'echet means of carefully chosen distances.
We show that it leads to binary consensus masks of intermediate size between Majority Voting and STAPLE and to different posterior probabilities than Mask Averaging and STAPLE methods.
arXiv Detail & Related papers (2023-09-14T23:28:58Z) - Denoising Diffusion Semantic Segmentation with Mask Prior Modeling [61.73352242029671]
We propose to ameliorate the semantic segmentation quality of existing discriminative approaches with a mask prior modeled by a denoising diffusion generative model.
We evaluate the proposed prior modeling with several off-the-shelf segmentors, and our experimental results on ADE20K and Cityscapes demonstrate that our approach could achieve competitively quantitative performance.
arXiv Detail & Related papers (2023-06-02T17:47:01Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Synergy Between Semantic Segmentation and Image Denoising via Alternate
Boosting [102.19116213923614]
We propose a boosting network to perform denoising and segmentation alternately.
We observe that not only denoising helps combat the drop of segmentation accuracy due to noise, but also pixel-wise semantic information boosts the capability of denoising.
Experimental results show that the denoised image quality is improved substantially and the segmentation accuracy is improved to close to that of clean images.
arXiv Detail & Related papers (2021-02-24T06:48:45Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
We propose a novel approach to the semantic segmentation of medical chest X-ray images with only image-level class labels as supervision.
We show that this approach is applicable to chest X-rays for detecting an anomalous volume of air between the lung and the chest wall.
arXiv Detail & Related papers (2020-07-01T20:48:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.