Confidential Computing for Privacy-Preserving Contact Tracing
- URL: http://arxiv.org/abs/2006.14235v1
- Date: Thu, 25 Jun 2020 08:06:23 GMT
- Title: Confidential Computing for Privacy-Preserving Contact Tracing
- Authors: David Sturzenegger, Aetienne Sardon, Stefan Deml, Thomas Hardjono
- Abstract summary: We propose the use of the Intel SGX trusted execution environment to build a privacy-preserving contact tracing backend.
A prototype of a privacy-preserving contact tracing system based on SGX has been implemented by the authors in a hackathon.
- Score: 0.18434042562191807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contact tracing is paramount to fighting the pandemic but it comes with
legitimate privacy concerns. This paper proposes a system enabling both,
contact tracing and data privacy.
We propose the use of the Intel SGX trusted execution environment to build a
privacy-preserving contact tracing backend. While the concept of a confidential
computing backend proposed in this paper can be combined with any existing
contact tracing smartphone application, we describe a full contact tracing
system for demonstration purposes.
A prototype of a privacy-preserving contact tracing system based on SGX has
been implemented by the authors in a hackathon.
Related papers
- Protect Your Score: Contact Tracing With Differential Privacy Guarantees [68.53998103087508]
We argue that privacy concerns currently hold deployment back.
We propose a contact tracing algorithm with differential privacy guarantees against this attack.
Especially for realistic test scenarios, we achieve a two to ten-fold reduction in the infection rate of the virus.
arXiv Detail & Related papers (2023-12-18T11:16:33Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
We study the contextual linear bandit problem with differential privacy (DP)
We show that it is possible to achieve a privacy/utility trade-off between JDP and LDP by leveraging the shuffle model of privacy.
Our result shows that it is possible to obtain a tradeoff between JDP and LDP by leveraging the shuffle model while preserving local privacy.
arXiv Detail & Related papers (2021-12-11T15:23:28Z) - BU-Trace: A Permissionless Mobile System for Privacy-Preserving
Intelligent Contact Tracing [40.44797233933835]
coronavirus disease 2019 (COVID-19) pandemic has caused an unprecedented health crisis for the global.
Despite intensive research on digital contact tracing, existing solutions can hardly meet users' requirements on privacy and convenience.
We propose BU-Trace, a permissionless mobile system for privacy-preserving intelligent contact tracing based on QR code and NFC technologies.
arXiv Detail & Related papers (2021-01-24T06:11:09Z) - Privacy-accuracy trade-offs in noisy digital exposure notifications [3.04585143845864]
There is interest in using the power of mobile phones to automate the contact-tracing process.
The rough idea is simple: use Bluetooth or other data-exchange technologies to record contacts between users, enable users to report positive diagnoses, and alert users who have been exposed to sick users.
Although designing practical protocols is of crucial importance, it is essential to realize that notifying users about exposure events may itself leak confidential information.
arXiv Detail & Related papers (2020-11-08T15:00:38Z) - BeeTrace: A Unified Platform for Secure Contact Tracing that Breaks Data
Silos [73.84437456144994]
Contact tracing is an important method to control the spread of an infectious disease such as COVID-19.
Current solutions do not utilize the huge volume of data stored in business databases and individual digital devices.
We propose BeeTrace, a unified platform that breaks data silos and deploys state-of-the-art cryptographic protocols to guarantee privacy goals.
arXiv Detail & Related papers (2020-07-05T10:33:45Z) - Mind the GAP: Security & Privacy Risks of Contact Tracing Apps [75.7995398006171]
Google and Apple have jointly provided an API for exposure notification in order to implement decentralized contract tracing apps using Bluetooth Low Energy.
We demonstrate that in real-world scenarios the GAP design is vulnerable to (i) profiling and possibly de-anonymizing persons, and (ii) relay-based wormhole attacks that basically can generate fake contacts.
arXiv Detail & Related papers (2020-06-10T16:05:05Z) - Decentralized Privacy-Preserving Proximity Tracing [50.27258414960402]
DP3T provides a technological foundation to help slow the spread of SARS-CoV-2.
System aims to minimise privacy and security risks for individuals and communities.
arXiv Detail & Related papers (2020-05-25T12:32:02Z) - A Note on Cryptographic Algorithms for Private Data Analysis in Contact
Tracing Applications [7.734726150561088]
Contact tracing is an important measure to counter the COVID-19 pandemic.
We focus on various cryptographic techniques that can help in addressing the Private Set Intersection problem.
arXiv Detail & Related papers (2020-05-19T06:18:13Z) - Privacy Guidelines for Contact Tracing Applications [19.094312133714023]
We discuss the scenarios which a contact tracing application should be able to handle.
We describe the various threat actors who can disrupt its working, or misuse end user's data.
We present privacy guidelines for contact tracing applications from different stakeholder's perspective.
arXiv Detail & Related papers (2020-04-28T06:44:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.