Dissociation in strong field: a quantum analysis of the relation between
angular momentum and angular distribution of fragments
- URL: http://arxiv.org/abs/2006.14362v1
- Date: Wed, 24 Jun 2020 10:31:52 GMT
- Title: Dissociation in strong field: a quantum analysis of the relation between
angular momentum and angular distribution of fragments
- Authors: Bar Ezra, Shimshon Kallush, Ronnie Kosloff
- Abstract summary: The transition between electronic states was modeled, including the laser pulse and transition dipole, and the angle between them.
We studied the influence of field intensity on the direction of the outcoming fragments and laboratory-fixed axis, defined by the field polarization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An ab initio simulation of strong-field photodissociation of diatomic
molecules was developed, inspired by recent dissociation experiments of F2-.
The transition between electronic states was modeled, including the laser pulse
and transition dipole, and the angle between them. The initial conditions of
the system were set to be thermal and to include different rovibrational
states. Carefully designed absorbing boundary conditions were applied to
describe the boundary conditions of the experiment. We studied the influence of
field intensity on the direction of the outcoming fragments and
laboratory-fixed axis, defined by the field polarization. At high intensities,
the angular distribution became more peaked with a marginal influence on
kinetic energy release.
Related papers
- Exotic localization for the two body bound states in the non-reciprocal Hubbard model [9.166422816832855]
We investigate the localization behavior of two-body Hubbard model in the presence of non-reciprocal tunneling.
We present the non-Hermitian bound states obtained with the center of mass methods in the conditions of strong repulsive interaction.
arXiv Detail & Related papers (2024-09-12T09:43:33Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Momentum-selective pair creation of spin excitations in dipolar bilayers [0.0]
We study the temporal growth and spatial propagation of quantum correlations in a two-dimensional bilayer realising a spin-1/2 quantum XXZ model with couplings mediated by long-range and anisotropic dipolar interactions.
The predicted behavior remains observable at very low filling fractions, making it accessible in state-of-the-art experiments with Rydberg atoms, magnetic atoms, and polar molecule arrays.
arXiv Detail & Related papers (2023-02-17T18:50:13Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Sub-cycle time-resolved nondipole dynamics in tunneling ionization [0.0]
The electron nondipole dynamics in tunneling ionization in an elliptically polarized laser field is investigated theoretically.
We calculate attoclock angle-resolved light-front momentum distributions at different ellipticities of the laser field in quasistatic and nonadiabatic regimes.
The nondipole correlations between longitudinal and transverse momentum components are examined.
arXiv Detail & Related papers (2022-02-10T20:17:47Z) - Diffraction of strongly interacting molecular Bose-Einstein condensate
from standing wave light pulses [3.7650630333237194]
We study the effects of strong inter-particle interaction on diffraction of a Bose-Einstein condensate of $6Li$ molecules created by pulses of a standing wave.
For short pulses we observe the standard Kapitza-Dirac diffraction, with the contrast of the diffraction pattern strongly reduced for very large interactions.
For longer pulses diffraction shows the characteristic for matter waves impinging on an array of tubes and coherent channeling transport.
arXiv Detail & Related papers (2022-01-05T14:01:08Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Nondipole Coulomb sub-barrier ionization dynamics and photon momentum
sharing [0.0]
We show that the sub-barrier Coulomb field increases the photoelectron nondipole momentum shift along the laser propagation direction.
We demonstrate that the signature of Coulomb induced sub-barrier effects can be identified in the photoelectron momentum distribution.
arXiv Detail & Related papers (2021-07-04T14:19:05Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.