Stochastic Differential Equations with Variational Wishart Diffusions
- URL: http://arxiv.org/abs/2006.14895v1
- Date: Fri, 26 Jun 2020 10:21:35 GMT
- Title: Stochastic Differential Equations with Variational Wishart Diffusions
- Authors: Martin J{\o}rgensen, Marc Peter Deisenroth, Hugh Salimbeni
- Abstract summary: We present a non-parametric way of inferring differential equations for both regression tasks and continuous-time dynamical modelling.
The work has high emphasis on the part of the differential equation, also known as the diffusion, and modelling it by means of Wishart processes.
- Score: 18.590352916158093
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a Bayesian non-parametric way of inferring stochastic differential
equations for both regression tasks and continuous-time dynamical modelling.
The work has high emphasis on the stochastic part of the differential equation,
also known as the diffusion, and modelling it by means of Wishart processes.
Further, we present a semi-parametric approach that allows the framework to
scale to high dimensions. This successfully lead us onto how to model both
latent and auto-regressive temporal systems with conditional heteroskedastic
noise. We provide experimental evidence that modelling diffusion often improves
performance and that this randomness in the differential equation can be
essential to avoid overfitting.
Related papers
- Continuous Diffusion Model for Language Modeling [57.396578974401734]
Existing continuous diffusion models for discrete data have limited performance compared to discrete approaches.
We propose a continuous diffusion model for language modeling that incorporates the geometry of the underlying categorical distribution.
arXiv Detail & Related papers (2025-02-17T08:54:29Z) - Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations [7.439555720106548]
We propose a fully Bayesian approach that treats the kernel hyper parameters as random variables and constructs coupled differential equations (SDEs) to learn their posterior distribution and that of inducing points.
Our approach provides a time-varying, comprehensive, and realistic posterior approximation through coupling variables using SDE methods.
Our work opens up exciting research avenues for advancing Bayesian inference and offers a powerful modeling tool for continuous-time Gaussian processes.
arXiv Detail & Related papers (2024-08-12T11:41:07Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing
Equations [5.279268784803583]
We introduce HyperSINDy, a framework for modeling dynamics via a deep generative model of sparse governing equations from data.
Once trained, HyperSINDy generates dynamics via a differential equation whose coefficients are driven by a white noise.
In experiments, HyperSINDy recovers ground truth governing equations, with learnedity scaling to match that of the data.
arXiv Detail & Related papers (2023-10-07T14:41:59Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Score-based Generative Modeling Through Backward Stochastic Differential
Equations: Inversion and Generation [6.2255027793924285]
The proposed BSDE-based diffusion model represents a novel approach to diffusion modeling, which extends the application of differential equations (SDEs) in machine learning.
We demonstrate the theoretical guarantees of the model, the benefits of using Lipschitz networks for score matching, and its potential applications in various areas such as diffusion inversion, conditional diffusion, and uncertainty quantification.
arXiv Detail & Related papers (2023-04-26T01:15:35Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Moment evolution equations and moment matching for stochastic image
EPDiff [68.97335984455059]
Models of image deformation allow study of time-continuous effects transforming images by deforming the image domain.
Applications include medical image analysis with both population trends and random subject specific variation.
We use moment approximations of the corresponding Ito diffusion to construct estimators for statistical inference in the parameters full model.
arXiv Detail & Related papers (2021-10-07T11:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.