Offline Handwritten Chinese Text Recognition with Convolutional Neural
Networks
- URL: http://arxiv.org/abs/2006.15619v1
- Date: Sun, 28 Jun 2020 14:34:38 GMT
- Title: Offline Handwritten Chinese Text Recognition with Convolutional Neural
Networks
- Authors: Brian Liu, Xianchao Xu, Yu Zhang
- Abstract summary: In this paper, we build the models using only the convolutional neural networks and use CTC as the loss function.
We achieve 6.81% character error rate (CER) on the ICDAR 2013 competition set, which is the best published result without language model correction.
- Score: 5.984124397831814
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning based methods have been dominating the text recognition tasks
in different and multilingual scenarios. The offline handwritten Chinese text
recognition (HCTR) is one of the most challenging tasks because it involves
thousands of characters, variant writing styles and complex data collection
process. Recently, the recurrent-free architectures for text recognition
appears to be competitive as its highly parallelism and comparable results. In
this paper, we build the models using only the convolutional neural networks
and use CTC as the loss function. To reduce the overfitting, we apply dropout
after each max-pooling layer and with extreme high rate on the last one before
the linear layer. The CASIA-HWDB database is selected to tune and evaluate the
proposed models. With the existing text samples as templates, we randomly
choose isolated character samples to synthesis more text samples for training.
We finally achieve 6.81% character error rate (CER) on the ICDAR 2013
competition set, which is the best published result without language model
correction.
Related papers
- Retrieval is Accurate Generation [99.24267226311157]
We introduce a novel method that selects context-aware phrases from a collection of supporting documents.
Our model achieves the best performance and the lowest latency among several retrieval-augmented baselines.
arXiv Detail & Related papers (2024-02-27T14:16:19Z) - Improving Text Embeddings with Large Language Models [59.930513259982725]
We introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps.
We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across 93 languages.
Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data.
arXiv Detail & Related papers (2023-12-31T02:13:18Z) - Multi-label Text Classification using GloVe and Neural Network Models [0.27195102129094995]
Existing solutions include traditional machine learning and deep neural networks for predictions.
This paper proposes a method utilizing the bag-of-words model approach based on the GloVe model and the CNN-BiLSTM network.
The method achieves an accuracy rate of 87.26% on the test set and an F1 score of 0.8737, showcasing promising results.
arXiv Detail & Related papers (2023-10-25T01:30:26Z) - Is it an i or an l: Test-time Adaptation of Text Line Recognition Models [9.149602257966917]
We introduce the problem of adapting text line recognition models during test time.
We propose an iterative self-training approach that uses feedback from the language model to update the optical model.
Experimental results show that the proposed adaptation method offers an absolute improvement of up to 8% in character error rate.
arXiv Detail & Related papers (2023-08-29T05:44:00Z) - Copy Is All You Need [66.00852205068327]
We formulate text generation as progressively copying text segments from an existing text collection.
Our approach achieves better generation quality according to both automatic and human evaluations.
Our approach attains additional performance gains by simply scaling up to larger text collections.
arXiv Detail & Related papers (2023-07-13T05:03:26Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - GENIUS: Sketch-based Language Model Pre-training via Extreme and
Selective Masking for Text Generation and Augmentation [76.7772833556714]
We introduce GENIUS: a conditional text generation model using sketches as input.
GENIUS is pre-trained on a large-scale textual corpus with a novel reconstruction from sketch objective.
We show that GENIUS can be used as a strong and ready-to-use data augmentation tool for various natural language processing (NLP) tasks.
arXiv Detail & Related papers (2022-11-18T16:39:45Z) - Thutmose Tagger: Single-pass neural model for Inverse Text Normalization [76.87664008338317]
Inverse text normalization (ITN) is an essential post-processing step in automatic speech recognition.
We present a dataset preparation method based on the granular alignment of ITN examples.
One-to-one correspondence between tags and input words improves the interpretability of the model's predictions.
arXiv Detail & Related papers (2022-07-29T20:39:02Z) - Continuous Offline Handwriting Recognition using Deep Learning Models [0.0]
Handwritten text recognition is an open problem of great interest in the area of automatic document image analysis.
We have proposed a new recognition model based on integrating two types of deep learning architectures: convolutional neural networks (CNN) and sequence-to-sequence (seq2seq)
The new proposed model provides competitive results with those obtained with other well-established methodologies.
arXiv Detail & Related papers (2021-12-26T07:31:03Z) - Boosting offline handwritten text recognition in historical documents
with few labeled lines [5.9207487081080705]
We analyze how to perform transfer learning from a massive database to a smaller historical database.
Second, we analyze methods to efficiently combine TL and data augmentation.
An algorithm to mitigate the effects of incorrect labelings in the training set is proposed.
arXiv Detail & Related papers (2020-12-04T11:59:35Z) - OrigamiNet: Weakly-Supervised, Segmentation-Free, One-Step, Full Page
Text Recognition by learning to unfold [6.09170287691728]
We take a step from segmentation-free single line recognition towards segmentation-free multi-line / full page recognition.
We propose a novel and simple neural network module, termed textbfOrigamiNet, that can augment any CTC-trained, fully convolutional single line text recognizer.
We achieve state-of-the-art character error rate on both IAM & ICDAR 2017 HTR benchmarks for handwriting recognition, surpassing all other methods in the literature.
arXiv Detail & Related papers (2020-06-12T22:18:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.