Interpretation of 3D CNNs for Brain MRI Data Classification
- URL: http://arxiv.org/abs/2006.15969v2
- Date: Wed, 14 Oct 2020 16:14:44 GMT
- Title: Interpretation of 3D CNNs for Brain MRI Data Classification
- Authors: Maxim Kan, Ruslan Aliev, Anna Rudenko, Nikita Drobyshev, Nikita
Petrashen, Ekaterina Kondrateva, Maxim Sharaev, Alexander Bernstein, Evgeny
Burnaev
- Abstract summary: We extend the previous findings in gender differences from diffusion-tensor imaging on T1 brain MRI scans.
We provide the voxel-wise 3D CNN interpretation comparing the results of three interpretation methods.
- Score: 56.895060189929055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning shows high potential for many medical image analysis tasks.
Neural networks can work with full-size data without extensive preprocessing
and feature generation and, thus, information loss. Recent work has shown that
the morphological difference in specific brain regions can be found on MRI with
the means of Convolution Neural Networks (CNN). However, interpretation of the
existing models is based on a region of interest and can not be extended to
voxel-wise image interpretation on a whole image. In the current work, we
consider the classification task on a large-scale open-source dataset of young
healthy subjects -- an exploration of brain differences between men and women.
In this paper, we extend the previous findings in gender differences from
diffusion-tensor imaging on T1 brain MRI scans. We provide the voxel-wise 3D
CNN interpretation comparing the results of three interpretation methods:
Meaningful Perturbations, Grad CAM and Guided Backpropagation, and contribute
with the open-source library.
Related papers
- Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - How You Split Matters: Data Leakage and Subject Characteristics Studies
in Longitudinal Brain MRI Analysis [0.0]
Deep learning models have revolutionized the field of medical image analysis, offering significant promise for improved diagnostics and patient care.
However, their performance can be misleadingly optimistic due to a hidden pitfall called 'data leakage'
In this study, we investigate data leakage in 3D medical imaging, specifically using 3D Convolutional Neural Networks (CNNs) for brain MRI analysis.
arXiv Detail & Related papers (2023-09-01T09:15:06Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
Graph convolutional networks (GCN) leverage topology-driven graph convolutional operations to combine information across the graph for inference tasks.
We have studied GCNs with covariance matrices as graphs in the form of coVariance neural networks (VNNs)
VNNs inherit the scale-free data processing architecture from GCNs and here, we show that VNNs exhibit transferability of performance over datasets whose covariance matrices converge to a limit object.
arXiv Detail & Related papers (2023-05-02T22:15:54Z) - Multi-pooling 3D Convolutional Neural Network for fMRI Classification of
Visual Brain States [3.19429184376611]
This paper proposed a multi-pooling 3D convolutional neural network (MP3DCNN) to improve fMRI classification accuracy.
MP3DCNN is mainly composed of a three-layer 3DCNN, where the first and second layers of 3D convolutions each have a branch of pooling connection.
arXiv Detail & Related papers (2023-03-25T07:54:51Z) - Decomposing 3D Neuroimaging into 2+1D Processing for Schizophrenia
Recognition [25.80846093248797]
We propose to process the 3D data by a 2+1D framework so that we can exploit the powerful deep 2D Convolutional Neural Network (CNN) networks pre-trained on the huge ImageNet dataset for 3D neuroimaging recognition.
Specifically, 3D volumes of Magnetic Resonance Imaging (MRI) metrics are decomposed to 2D slices according to neighboring voxel positions.
Global pooling is applied to remove redundant information as the activation patterns are sparsely distributed over feature maps.
Channel-wise and slice-wise convolutions are proposed to aggregate the contextual information in the third dimension unprocessed by the 2D CNN model.
arXiv Detail & Related papers (2022-11-21T15:22:59Z) - Predicting Brain Age using Transferable coVariance Neural Networks [119.45320143101381]
We have recently studied covariance neural networks (VNNs) that operate on sample covariance matrices.
In this paper, we demonstrate the utility of VNNs in inferring brain age using cortical thickness data.
Our results show that VNNs exhibit multi-scale and multi-site transferability for inferring brain age
In the context of brain age in Alzheimer's disease (AD), our experiments show that i) VNN outputs are interpretable as brain age predicted using VNNs is significantly elevated for AD with respect to healthy subjects.
arXiv Detail & Related papers (2022-10-28T18:58:34Z) - Feature visualization for convolutional neural network models trained on
neuroimaging data [0.0]
We show for the first time results using feature visualization of convolutional neural networks (CNNs)
We have trained CNNs for different tasks including sex classification and artificial lesion classification based on structural magnetic resonance imaging (MRI) data.
The resulting images reveal the learned concepts of the artificial lesions, including their shapes, but remain hard to interpret for abstract features in the sex classification task.
arXiv Detail & Related papers (2022-03-24T15:24:38Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
We focus on the task of brain age regression from 3D brain Magnetic Resonance (MR) images using a Convolutional Neural Network, termed prediction model.
We implement a noise model which aims to add as much noise as possible to the input without harming the performance of the prediction model.
We test our method on 13,750 3D brain MR images from the UK Biobank, and our findings are consistent with the existing neuropathology literature.
arXiv Detail & Related papers (2021-08-11T18:08:09Z) - Rotation-Equivariant Deep Learning for Diffusion MRI [49.321304988619865]
Convolutional networks are successful, but they have recently been outperformed by new neural networks that are equivariant under rotations and translations.
Here we generalize them to 6D diffusion MRI data, ensuring joint equivariance under 3D roto-translations in image space and the matching 3D rotations in $q$-space.
Our proposed neural networks yield better results and require fewer scans for training compared to non-rotation-equivariant deep learning.
arXiv Detail & Related papers (2021-02-13T15:18:34Z) - Leveraging 3D Information in Unsupervised Brain MRI Segmentation [1.6148039130053087]
Unsupervised Anomaly Detection (UAD) methods are proposed, detecting anomalies as outliers of a healthy model learned using a Variational Autoencoder (VAE)
Here, we propose to perform UAD in a 3D fashion and compare 2D and 3D VAEs.
As a side contribution, we present a new loss function guarantying a robust training. Learning is performed using a multicentric dataset of healthy brain MRIs, and segmentation performances are estimated on White-Matter Hyperintensities and tumors lesions.
arXiv Detail & Related papers (2021-01-26T10:04:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.