Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition
- URL: http://arxiv.org/abs/2006.16011v3
- Date: Mon, 29 Mar 2021 10:27:41 GMT
- Title: Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition
- Authors: Hassan Abu Alhaija, Siva Karthik Mustikovela, Justus Thies, Varun
Jampani, Matthias Nie{\ss}ner, Andreas Geiger, Carsten Rother
- Abstract summary: We propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties.
Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.
- Score: 67.9464567157846
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural rendering techniques promise efficient photo-realistic image synthesis
while at the same time providing rich control over scene parameters by learning
the physical image formation process. While several supervised methods have
been proposed for this task, acquiring a dataset of images with accurately
aligned 3D models is very difficult. The main contribution of this work is to
lift this restriction by training a neural rendering algorithm from unpaired
data. More specifically, we propose an autoencoder for joint generation of
realistic images from synthetic 3D models while simultaneously decomposing real
images into their intrinsic shape and appearance properties. In contrast to a
traditional graphics pipeline, our approach does not require to specify all
scene properties, such as material parameters and lighting by hand. Instead, we
learn photo-realistic deferred rendering from a small set of 3D models and a
larger set of unaligned real images, both of which are easy to acquire in
practice. Simultaneously, we obtain accurate intrinsic decompositions of real
images while not requiring paired ground truth. Our experiments confirm that a
joint treatment of rendering and decomposition is indeed beneficial and that
our approach outperforms state-of-the-art image-to-image translation baselines
both qualitatively and quantitatively.
Related papers
- FashionR2R: Texture-preserving Rendered-to-Real Image Translation with Diffusion Models [14.596090302381647]
This paper studies photorealism enhancement of rendered images, leveraging generative power from diffusion models on the controlled basis of rendering.
We introduce a novel framework to translate rendered images into their realistic counterparts, which consists of two stages: Domain Knowledge Injection (DKI) and Realistic Image Generation (RIG)
arXiv Detail & Related papers (2024-10-18T12:48:22Z) - ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models [65.22994156658918]
We present a method that learns to generate multi-view images in a single denoising process from real-world data.
We design an autoregressive generation that renders more 3D-consistent images at any viewpoint.
arXiv Detail & Related papers (2024-03-04T07:57:05Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues.
Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images.
For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data.
arXiv Detail & Related papers (2023-08-22T14:39:17Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
We present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives.
Unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images.
We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points.
arXiv Detail & Related papers (2023-07-11T17:58:31Z) - Synthetic Image Data for Deep Learning [0.294944680995069]
Realistic synthetic image data rendered from 3D models can be used to augment image sets and train image classification semantic segmentation models.
We show how high quality physically-based rendering and domain randomization can efficiently create a large synthetic dataset based on production 3D CAD models of a real vehicle.
arXiv Detail & Related papers (2022-12-12T20:28:13Z) - Realistic Image Synthesis with Configurable 3D Scene Layouts [59.872657806747576]
We propose a novel approach to realistic-looking image synthesis based on a 3D scene layout.
Our approach takes a 3D scene with semantic class labels as input and trains a 3D scene painting network.
With the trained painting network, realistic-looking images for the input 3D scene can be rendered and manipulated.
arXiv Detail & Related papers (2021-08-23T09:44:56Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z) - Using Adaptive Gradient for Texture Learning in Single-View 3D
Reconstruction [0.0]
Learning-based approaches for 3D model reconstruction have attracted attention owing to its modern applications.
We present a novel sampling algorithm by optimizing the gradient of predicted coordinates based on the variance on the sampling image.
We also adopt Frechet Inception Distance (FID) to form a loss function in learning, which helps bridging the gap between rendered images and input images.
arXiv Detail & Related papers (2021-04-29T07:52:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.