On the Iteration Complexity of Hypergradient Computation
- URL: http://arxiv.org/abs/2006.16218v2
- Date: Fri, 10 Jul 2020 17:28:22 GMT
- Title: On the Iteration Complexity of Hypergradient Computation
- Authors: Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, Saverio Salzo
- Abstract summary: In machine learning, the gradient of the upper-level objective (hypergradient) is hard or even impossible to compute exactly.
We investigate some popular approaches to compute the hypergradient, based on reverse mode iterative differentiation and approximate implicit differentiation.
This analysis suggests a hierarchy in terms of computational efficiency among the above methods, with approximate implicit differentiation based on conjugate gradient performing best.
- Score: 38.409444179509705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a general class of bilevel problems, consisting in the minimization
of an upper-level objective which depends on the solution to a parametric
fixed-point equation. Important instances arising in machine learning include
hyperparameter optimization, meta-learning, and certain graph and recurrent
neural networks. Typically the gradient of the upper-level objective
(hypergradient) is hard or even impossible to compute exactly, which has raised
the interest in approximation methods. We investigate some popular approaches
to compute the hypergradient, based on reverse mode iterative differentiation
and approximate implicit differentiation. Under the hypothesis that the fixed
point equation is defined by a contraction mapping, we present a unified
analysis which allows for the first time to quantitatively compare these
methods, providing explicit bounds for their iteration complexity. This
analysis suggests a hierarchy in terms of computational efficiency among the
above methods, with approximate implicit differentiation based on conjugate
gradient performing best. We present an extensive experimental comparison among
the methods which confirm the theoretical findings.
Related papers
- Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - Variance reduction techniques for stochastic proximal point algorithms [5.374800961359305]
In this work, we propose the first unified study of variance reduction techniques for proximal point algorithms.
We introduce a generic proximal-based algorithm that can be specified to give the proximal version of SVRG, SAGA, and some of their variants.
Our experiments demonstrate the advantages of the proximal variance reduction methods over their gradient counterparts.
arXiv Detail & Related papers (2023-08-18T05:11:50Z) - Analyzing Inexact Hypergradients for Bilevel Learning [0.09669369645900441]
We introduce a unified framework for computing hypergradients that generalizes existing methods based on the implicit function theorem and automatic differentiation/backpropagation.
Our numerical results show that, surprisingly, for efficient bilevel optimization, the choice of hypergradient algorithm is at least as important as the choice of lower-level solver.
arXiv Detail & Related papers (2023-01-11T23:54:27Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
We show that a phenomenon can be precisely characterized in the context of kernel methods.
We consider the minimization of a quadratic objective in a separable Hilbert space, and show that with early stopping, the choice of learning rate influences the spectral decomposition of the obtained solution.
arXiv Detail & Related papers (2022-02-28T13:01:04Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Convergence Properties of Stochastic Hypergradients [38.64355126221992]
We study approximation schemes for the hypergradient, which are important when the lower-level problem is empirical risk on a large dataset.
We provide numerical experiments to support our theoretical analysis and to show the advantage of using hypergradients in practice.
arXiv Detail & Related papers (2020-11-13T20:50:36Z) - A Unified Analysis of First-Order Methods for Smooth Games via Integral
Quadratic Constraints [10.578409461429626]
In this work, we adapt the integral quadratic constraints theory to first-order methods for smooth and strongly-varying games and iteration.
We provide emphfor the first time a global convergence rate for the negative momentum method(NM) with an complexity $mathcalO(kappa1.5)$, which matches its known lower bound.
We show that it is impossible for an algorithm with one step of memory to achieve acceleration if it only queries the gradient once per batch.
arXiv Detail & Related papers (2020-09-23T20:02:00Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.