MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
- URL: http://arxiv.org/abs/2006.16908v2
- Date: Wed, 20 Jan 2021 09:35:03 GMT
- Title: MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
- Authors: Elise van der Pol, Daniel E. Worrall, Herke van Hoof, Frans A.
Oliehoek, Max Welling
- Abstract summary: This paper introduces MDP homomorphic networks for deep reinforcement learning.
MDP homomorphic networks are neural networks that are equivariant under symmetries in the joint state-action space of an MDP.
We show that such networks converge faster than unstructured networks on CartPole, a grid world and Pong.
- Score: 90.20563679417567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces MDP homomorphic networks for deep reinforcement
learning. MDP homomorphic networks are neural networks that are equivariant
under symmetries in the joint state-action space of an MDP. Current approaches
to deep reinforcement learning do not usually exploit knowledge about such
structure. By building this prior knowledge into policy and value networks
using an equivariance constraint, we can reduce the size of the solution space.
We specifically focus on group-structured symmetries (invertible
transformations). Additionally, we introduce an easy method for constructing
equivariant network layers numerically, so the system designer need not solve
the constraints by hand, as is typically done. We construct MDP homomorphic
MLPs and CNNs that are equivariant under either a group of reflections or
rotations. We show that such networks converge faster than unstructured
baselines on CartPole, a grid world and Pong.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - A rank decomposition for the topological classification of neural representations [0.0]
In this work, we leverage the fact that neural networks are equivalent to continuous piecewise-affine maps.
We study the homology groups of the quotient of a manifold $mathcalM$ and a subset $A$, assuming some minimal properties on these spaces.
We show that in randomly narrow networks, there will be regions in which the (co)homology groups of a data manifold can change.
arXiv Detail & Related papers (2024-04-30T17:01:20Z) - Equivariant Architectures for Learning in Deep Weight Spaces [54.61765488960555]
We present a novel network architecture for learning in deep weight spaces.
It takes as input a concatenation of weights and biases of a pre-trainedvariant.
We show how these layers can be implemented using three basic operations.
arXiv Detail & Related papers (2023-01-30T10:50:33Z) - Bispectral Neural Networks [1.0323063834827415]
We present a neural network architecture, Bispectral Neural Networks (BNNs)
BNNs are able to simultaneously learn groups, their irreducible representations, and corresponding equivariant and complete-invariant maps.
arXiv Detail & Related papers (2022-09-07T18:34:48Z) - A General Framework For Proving The Equivariant Strong Lottery Ticket
Hypothesis [15.376680573592997]
Modern neural networks are capable of incorporating more than just translation symmetry.
We generalize the Strong Lottery Ticket Hypothesis (SLTH) to functions that preserve the action of the group $G$.
We prove our theory by overparametrized $textE(2)$-steerable CNNs and message passing GNNs.
arXiv Detail & Related papers (2022-06-09T04:40:18Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
A natural way to incorporate symmetries in shape space learning is to ask that the mapping to the shape space (encoder) and mapping from the shape space (decoder) are equivariant to the relevant symmetries.
We present a framework for incorporating equivariance in encoders and decoders by introducing two contributions.
arXiv Detail & Related papers (2021-12-03T06:41:19Z) - Geometric Deep Learning and Equivariant Neural Networks [0.9381376621526817]
We survey the mathematical foundations of geometric deep learning, focusing on group equivariant and gauge equivariant neural networks.
We develop gauge equivariant convolutional neural networks on arbitrary manifold $mathcalM$ using principal bundles with structure group $K$ and equivariant maps between sections of associated vector bundles.
We analyze several applications of this formalism, including semantic segmentation and object detection networks.
arXiv Detail & Related papers (2021-05-28T15:41:52Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
In this work, we make use of deep residual neural networks to solve the non-stationary ODE (flow equation) based on a Euler's discretization scheme.
We illustrate these ideas on diverse registration problems of 3D shapes under complex topology-preserving transformations.
arXiv Detail & Related papers (2021-02-16T04:07:13Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.