Tomographic Auto-Encoder: Unsupervised Bayesian Recovery of Corrupted
Data
- URL: http://arxiv.org/abs/2006.16938v1
- Date: Tue, 30 Jun 2020 16:18:16 GMT
- Title: Tomographic Auto-Encoder: Unsupervised Bayesian Recovery of Corrupted
Data
- Authors: Francesco Tonolini, Pablo G. Moreno, Andreas Damianou, Roderick
Murray-Smith
- Abstract summary: We propose a new probabilistic method for unsupervised recovery of corrupted data.
Given a large ensemble of degraded samples, our method recovers accurate posteriors of clean values.
We test our model in a data recovery task under the common setting of missing values and noise.
- Score: 4.725669222165439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new probabilistic method for unsupervised recovery of corrupted
data. Given a large ensemble of degraded samples, our method recovers accurate
posteriors of clean values, allowing the exploration of the manifold of
possible reconstructed data and hence characterising the underlying
uncertainty. In this setting, direct application of classical variational
methods often gives rise to collapsed densities that do not adequately explore
the solution space. Instead, we derive our novel reduced entropy condition
approximate inference method that results in rich posteriors. We test our model
in a data recovery task under the common setting of missing values and noise,
demonstrating superior performance to existing variational methods for
imputation and de-noising with different real data sets. We further show higher
classification accuracy after imputation, proving the advantage of propagating
uncertainty to downstream tasks with our model.
Related papers
- Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - An Iterative Method for Unsupervised Robust Anomaly Detection Under Data
Contamination [24.74938110451834]
Most deep anomaly detection models are based on learning normality from datasets.
In practice, the normality assumption is often violated due to the nature of real data distributions.
We propose a learning framework to reduce this gap and achieve better normality representation.
arXiv Detail & Related papers (2023-09-18T02:36:19Z) - Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN [4.5123329001179275]
This study presents an adversarial method for anomaly detection in real-world applications, leveraging the power of generative adversarial neural networks (GANs)
Previous methods suffer from the high variance between class-wise accuracy which leads to not being applicable for all types of anomalies.
The proposed method named RCALAD tries to solve this problem by introducing a novel discriminator to the structure, which results in a more efficient training process.
arXiv Detail & Related papers (2023-04-16T13:05:39Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Denoising diffusion models for out-of-distribution detection [2.113925122479677]
We exploit the view of denoising probabilistic diffusion models (DDPM) as denoising autoencoders.
We use DDPMs to reconstruct an input that has been noised to a range of noise levels, and use the resulting multi-dimensional reconstruction error to classify out-of-distribution inputs.
arXiv Detail & Related papers (2022-11-14T20:35:11Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - Classification and Uncertainty Quantification of Corrupted Data using
Semi-Supervised Autoencoders [11.300365160909879]
We present a probabilistic approach to classify strongly corrupted data and quantify uncertainty.
A semi-supervised autoencoder trained on uncorrupted data is the underlying architecture.
We show that the model uncertainty strongly depends on whether the classification is correct or wrong.
arXiv Detail & Related papers (2021-05-27T18:47:55Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Interpreting Rate-Distortion of Variational Autoencoder and Using Model
Uncertainty for Anomaly Detection [5.491655566898372]
We build a scalable machine learning system for unsupervised anomaly detection via representation learning.
We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error.
We show empirically the competitive performance of our approach on benchmark datasets.
arXiv Detail & Related papers (2020-05-05T00:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.