Track Seeding and Labelling with Embedded-space Graph Neural Networks
- URL: http://arxiv.org/abs/2007.00149v1
- Date: Tue, 30 Jun 2020 23:43:28 GMT
- Title: Track Seeding and Labelling with Embedded-space Graph Neural Networks
- Authors: Nicholas Choma, Daniel Murnane, Xiangyang Ju, Paolo Calafiura, Sean
Conlon, Steven Farrell, Prabhat, Giuseppe Cerati, Lindsey Gray, Thomas
Klijnsma, Jim Kowalkowski, Panagiotis Spentzouris, Jean-Roch Vlimant, Maria
Spiropulu, Adam Aurisano, Jeremy Hewes, Aristeidis Tsaris, Kazuhiro Terao,
Tracy Usher
- Abstract summary: The Exa.TrkX project is investigating machine learning approaches to particle track reconstruction.
The most promising of these solutions, graph neural networks (GNN), process the event as a graph that connects track measurements.
We report updates on the state-of-the-art architectures for this task.
- Score: 3.5236955190576693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address the unprecedented scale of HL-LHC data, the Exa.TrkX project is
investigating a variety of machine learning approaches to particle track
reconstruction. The most promising of these solutions, graph neural networks
(GNN), process the event as a graph that connects track measurements (detector
hits corresponding to nodes) with candidate line segments between the hits
(corresponding to edges). Detector information can be associated with nodes and
edges, enabling a GNN to propagate the embedded parameters around the graph and
predict node-, edge- and graph-level observables. Previously, message-passing
GNNs have shown success in predicting doublet likelihood, and we here report
updates on the state-of-the-art architectures for this task. In addition, the
Exa.TrkX project has investigated innovations in both graph construction, and
embedded representations, in an effort to achieve fully learned end-to-end
track finding. Hence, we present a suite of extensions to the original model,
with encouraging results for hitgraph classification. In addition, we explore
increased performance by constructing graphs from learned representations which
contain non-linear metric structure, allowing for efficient clustering and
neighborhood queries of data points. We demonstrate how this framework fits in
with both traditional clustering pipelines, and GNN approaches. The embedded
graphs feed into high-accuracy doublet and triplet classifiers, or can be used
as an end-to-end track classifier by clustering in an embedded space. A set of
post-processing methods improve performance with knowledge of the detector
physics. Finally, we present numerical results on the TrackML particle tracking
challenge dataset, where our framework shows favorable results in both seeding
and track finding.
Related papers
- EggNet: An Evolving Graph-based Graph Attention Network for Particle Track Reconstruction [0.0]
We consider a one-shot OC approach that reconstructs particle tracks directly from a set of hits.
This approach iteratively updates the graphs and can better facilitate the message passing across each graph.
Preliminary studies on the TrackML dataset show better track performance compared to the methods that require a fixed input graph.
arXiv Detail & Related papers (2024-07-18T22:29:24Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
We propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT)
GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information.
We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2021-10-29T19:55:12Z) - Charged particle tracking via edge-classifying interaction networks [0.0]
In this work, we adapt the physics-motivated interaction network (IN) GNN to the problem of charged-particle tracking in the high-pileup conditions expected at the HL-LHC.
We demonstrate the IN's excellent edge-classification accuracy and tracking efficiency through a suite of measurements at each stage of GNN-based tracking.
The proposed IN architecture is substantially smaller than previously studied GNN tracking architectures, a reduction in size critical for enabling GNN-based tracking in constrained computing environments.
arXiv Detail & Related papers (2021-03-30T21:58:52Z) - Graph Networks with Spectral Message Passing [1.0742675209112622]
We introduce the Spectral Graph Network, which applies message passing to both the spatial and spectral domains.
Our results show that the Spectral GN promotes efficient training, reaching high performance with fewer training iterations despite having more parameters.
arXiv Detail & Related papers (2020-12-31T21:33:17Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - GAIN: Graph Attention & Interaction Network for Inductive
Semi-Supervised Learning over Large-scale Graphs [18.23435958000212]
Graph Neural Networks (GNNs) have led to state-of-the-art performance on a variety of machine learning tasks such as recommendation, node classification and link prediction.
Most existing GNN models exploit a single type of aggregator to aggregate neighboring nodes information.
We propose a novel graph neural network architecture, Graph Attention & Interaction Network (GAIN), for inductive learning on graphs.
arXiv Detail & Related papers (2020-11-03T00:20:24Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.