A Novel RL-assisted Deep Learning Framework for Task-informative Signals
Selection and Classification for Spontaneous BCIs
- URL: http://arxiv.org/abs/2007.00162v1
- Date: Wed, 1 Jul 2020 00:35:41 GMT
- Title: A Novel RL-assisted Deep Learning Framework for Task-informative Signals
Selection and Classification for Spontaneous BCIs
- Authors: Wonjun Ko, Eunjin Jeon, and Heung-Il Suk
- Abstract summary: We formulate the problem of estimating and selecting task-relevant temporal signal segments from a single EEG trial.
We propose a novel reinforcement-learning mechanism that can be combined with the existing deep-learning based BCI methods.
- Score: 2.299749220980997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we formulate the problem of estimating and selecting
task-relevant temporal signal segments from a single EEG trial in the form of a
Markov decision process and propose a novel reinforcement-learning mechanism
that can be combined with the existing deep-learning based BCI methods. To be
specific, we devise an actor-critic network such that an agent can determine
which timepoints need to be used (informative) or discarded (uninformative) in
composing the intention-related features in a given trial, and thus enhancing
the intention identification performance. To validate the effectiveness of our
proposed method, we conducted experiments with a publicly available big MI
dataset and applied our novel mechanism to various recent deep-learning
architectures designed for MI classification. Based on the exhaustive
experiments, we observed that our proposed method helped achieve statistically
significant improvements in performance.
Related papers
- Informed Decision-Making through Advancements in Open Set Recognition and Unknown Sample Detection [0.0]
Open set recognition (OSR) aims to bring classification tasks in a situation that is more like reality.
This study provides an algorithm exploring a new representation of feature space to improve classification in OSR tasks.
arXiv Detail & Related papers (2024-05-09T15:15:34Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods.
We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground.
We also propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL.
arXiv Detail & Related papers (2024-02-05T22:15:55Z) - Study Features via Exploring Distribution Structure [9.596923373834093]
We present a novel framework for data redundancy measurement based on probabilistic modeling of datasets, and a new criterion for redundancy detection that is resilient to noise.
Our framework is flexible and can handle different types of features, and our experiments on benchmark datasets demonstrate the effectiveness of our methods.
arXiv Detail & Related papers (2024-01-15T09:01:31Z) - DUCK: Distance-based Unlearning via Centroid Kinematics [40.2428948628001]
This work introduces a novel unlearning algorithm, denoted as Distance-based Unlearning via Centroid Kinematics (DUCK)
evaluation of the algorithm's performance is conducted across various benchmark datasets.
We also introduce a novel metric, called Adaptive Unlearning Score (AUS), encompassing not only the efficacy of the unlearning process in forgetting target data but also quantifying the performance loss relative to the original model.
arXiv Detail & Related papers (2023-12-04T17:10:25Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
In this study, we introduce a novel two-stage framework to boost in-context learning in large language models (LLMs)
Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages.
The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation.
arXiv Detail & Related papers (2023-05-22T13:18:17Z) - Algorithm Design for Online Meta-Learning with Task Boundary Detection [63.284263611646]
We propose a novel algorithm for task-agnostic online meta-learning in non-stationary environments.
We first propose two simple but effective detection mechanisms of task switches and distribution shift.
We show that a sublinear task-averaged regret can be achieved for our algorithm under mild conditions.
arXiv Detail & Related papers (2023-02-02T04:02:49Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z) - SEKD: Self-Evolving Keypoint Detection and Description [42.114065439674036]
We propose a self-supervised framework to learn an advanced local feature model from unlabeled natural images.
We benchmark the proposed method on homography estimation, relative pose estimation, and structure-from-motion tasks.
We will release our code along with the trained model publicly.
arXiv Detail & Related papers (2020-06-09T06:56:50Z) - Dynamic Knowledge embedding and tracing [18.717482292051788]
We propose a novel approach to knowledge tracing that combines techniques from matrix factorization with recent progress in recurrent neural networks (RNNs)
The proposed emphDynEmb framework enables the tracking of student knowledge even without the concept/skill tag information.
arXiv Detail & Related papers (2020-05-18T21:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.