Surface Denoising based on Normal Filtering in a Robust Statistics
Framework
- URL: http://arxiv.org/abs/2007.00842v1
- Date: Thu, 2 Jul 2020 02:31:24 GMT
- Title: Surface Denoising based on Normal Filtering in a Robust Statistics
Framework
- Authors: Sunil Kumar Yadav and Martin Skrodzki and Eric Zimmermann and Konrad
Polthier
- Abstract summary: Noise is inevitable during a surface acquisition process using 3D scanners.
Noise-removal process (denoising) can be performed by filtering the surface normals first.
In many available denoising algorithms, the robustness of noise-free normals is a key factor.
- Score: 2.294014185517203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: During a surface acquisition process using 3D scanners, noise is inevitable
and an important step in geometry processing is to remove these noise
components from these surfaces (given as points-set or triangulated mesh). The
noise-removal process (denoising) can be performed by filtering the surface
normals first and by adjusting the vertex positions according to filtered
normals afterwards. Therefore, in many available denoising algorithms, the
computation of noise-free normals is a key factor. A variety of filters have
been introduced for noise-removal from normals, with different focus points
like robustness against outliers or large amplitude of noise. Although these
filters are performing well in different aspects, a unified framework is
missing to establish the relation between them and to provide a theoretical
analysis beyond the performance of each method.
In this paper, we introduce such a framework to establish relations between a
number of widely-used nonlinear filters for face normals in mesh denoising and
vertex normals in point set denoising. We cover robust statistical estimation
with M-smoothers and their application to linear and non-linear normal
filtering. Although these methods originate in different mathematical theories
- which include diffusion-, bilateral-, and directional curvature-based
algorithms - we demonstrate that all of them can be cast into a unified
framework of robust statistics using robust error norms and their corresponding
influence functions. This unification contributes to a better understanding of
the individual methods and their relations with each other. Furthermore, the
presented framework provides a platform for new techniques to combine the
advantages of known filters and to compare them with available methods.
Related papers
- Information limits and Thouless-Anderson-Palmer equations for spiked matrix models with structured noise [19.496063739638924]
We consider a saturate problem of Bayesian inference for a structured spiked model.
We show how to predict the statistical limits using an efficient algorithm inspired by the theory of adaptive Thouless-Anderson-Palmer equations.
arXiv Detail & Related papers (2024-05-31T16:38:35Z) - Matrix Denoising with Doubly Heteroscedastic Noise: Fundamental Limits and Optimal Spectral Methods [24.06775799553418]
We study the matrix denoising problem of estimating the singular vectors of a rank-$1$ signal corrupted by noise with both column and row correlations.
Our work establishes the information-theoretic and algorithmic limits of matrix denoising with doubly heteroscedastic noise.
arXiv Detail & Related papers (2024-05-22T18:38:10Z) - StraightPCF: Straight Point Cloud Filtering [50.66412286723848]
Point cloud filtering is a fundamental 3D vision task, which aims to remove noise while recovering the underlying clean surfaces.
We introduce StraightPCF, a new deep learning based method for point cloud filtering.
It works by moving noisy points along straight paths, thus reducing discretization errors while ensuring faster convergence to the clean surfaces.
arXiv Detail & Related papers (2024-05-14T05:41:59Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
We present a unified approach for the theoretical analysis of first-order variation methods.
Our approach covers both non-linear gradient and strongly Monte Carlo problems.
We provide bounds that match the oracle strongly in the case of convex method optimization problems.
arXiv Detail & Related papers (2023-05-25T11:11:31Z) - Contrastive Learning for Joint Normal Estimation and Point Cloud
Filtering [12.602645108896636]
We propose a novel deep learning method to jointly estimate normals and filter point clouds.
We first introduce a 3D patch based contrastive learning framework, with noise corruption as an augmentation.
Experimental results show that our method well supports the two tasks simultaneously and preserves sharp features and fine details.
arXiv Detail & Related papers (2022-08-14T09:16:25Z) - The Optimal Noise in Noise-Contrastive Learning Is Not What You Think [80.07065346699005]
We show that deviating from this assumption can actually lead to better statistical estimators.
In particular, the optimal noise distribution is different from the data's and even from a different family.
arXiv Detail & Related papers (2022-03-02T13:59:20Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
Causal inference from observational datasets often relies on measuring and adjusting for covariates.
We show that this robust optimization approach can extend a wide range of causal adjustment methods to perform partial identification.
Across synthetic and real datasets, we find that this approach provides ATE bounds with a higher coverage probability than existing methods.
arXiv Detail & Related papers (2022-02-22T04:24:26Z) - A New Adaptive Noise Covariance Matrices Estimation and Filtering
Method: Application to Multi-Object Tracking [6.571006663689735]
Kalman filters are widely used for object tracking, where process and measurement noise are usually considered accurately known and constant.
This paper proposes a new estimation-correction closed-loop estimation method to estimate the Kalman filter process and measurement noise covariance matrices online.
arXiv Detail & Related papers (2021-12-20T03:11:48Z) - Noise-Resistant Deep Metric Learning with Probabilistic Instance
Filtering [59.286567680389766]
Noisy labels are commonly found in real-world data, which cause performance degradation of deep neural networks.
We propose Probabilistic Ranking-based Instance Selection with Memory (PRISM) approach for DML.
PRISM calculates the probability of a label being clean, and filters out potentially noisy samples.
arXiv Detail & Related papers (2021-08-03T12:15:25Z) - Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser [7.7288480250888]
We develop a robust and general methodology for making use of implicit priors in deep neural networks.
A CNN trained to perform blind (i.e., with unknown noise level) least-squares denoising is presented.
A generalization of this algorithm to constrained sampling provides a method for using the implicit prior to solve any linear inverse problem.
arXiv Detail & Related papers (2020-07-27T15:40:46Z) - Dependency Aware Filter Pruning [74.69495455411987]
Pruning a proportion of unimportant filters is an efficient way to mitigate the inference cost.
Previous work prunes filters according to their weight norms or the corresponding batch-norm scaling factors.
We propose a novel mechanism to dynamically control the sparsity-inducing regularization so as to achieve the desired sparsity.
arXiv Detail & Related papers (2020-05-06T07:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.