Accurate Characterization of Non-Uniformly Sampled Time Series using
Stochastic Differential Equations
- URL: http://arxiv.org/abs/2007.01073v1
- Date: Thu, 2 Jul 2020 13:03:09 GMT
- Title: Accurate Characterization of Non-Uniformly Sampled Time Series using
Stochastic Differential Equations
- Authors: Stijn de Waele
- Abstract summary: Non-uniform sampling arises when an experimenter does not have full control over the sampling characteristics of the process under investigation.
We introduce new initial estimates for the numerical optimization of the likelihood.
We show the increased accuracy achieved the new estimator in simulation experiments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-uniform sampling arises when an experimenter does not have full control
over the sampling characteristics of the process under investigation. Moreover,
it is introduced intentionally in algorithms such as Bayesian optimization and
compressive sensing. We argue that Stochastic Differential Equations (SDEs) are
especially well-suited for characterizing second order moments of such time
series. We introduce new initial estimates for the numerical optimization of
the likelihood, based on incremental estimation and initialization from
autoregressive models. Furthermore, we introduce model truncation as a purely
data-driven method to reduce the order of the estimated model based on the SDE
likelihood. We show the increased accuracy achieved with the new estimator in
simulation experiments, covering all challenging circumstances that may be
encountered in characterizing a non-uniformly sampled time series. Finally, we
apply the new estimator to experimental rainfall variability data.
Related papers
- Stochastic Differential Equations models for Least-Squares Stochastic Gradient Descent [6.3151583550712065]
We study the dynamics of a continuous-time model of the Gradient Descent (SGD)
We analyze degenerate Differential Equations (squareSDEs) that model SGD either in the case of the training loss (finite samples) or the population one (online setting)
arXiv Detail & Related papers (2024-07-02T14:52:21Z) - Score-based Generative Models with Adaptive Momentum [40.84399531998246]
We propose an adaptive momentum sampling method to accelerate the transforming process.
We show that our method can produce more faithful images/graphs in small sampling steps with 2 to 5 times speed up.
arXiv Detail & Related papers (2024-05-22T15:20:27Z) - Predicting Ordinary Differential Equations with Transformers [65.07437364102931]
We develop a transformer-based sequence-to-sequence model that recovers scalar ordinary differential equations (ODEs) in symbolic form from irregularly sampled and noisy observations of a single solution trajectory.
Our method is efficiently scalable: after one-time pretraining on a large set of ODEs, we can infer the governing law of a new observed solution in a few forward passes of the model.
arXiv Detail & Related papers (2023-07-24T08:46:12Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Fast Estimation of Bayesian State Space Models Using Amortized
Simulation-Based Inference [0.0]
This paper presents a fast algorithm for estimating hidden states of Bayesian state space models.
After pretraining, finding the posterior distribution for any dataset takes from hundredths to tenths of a second.
arXiv Detail & Related papers (2022-10-13T16:37:05Z) - Data-Driven Sample Average Approximation with Covariate Information [0.0]
We study optimization for data-driven decision-making when we have observations of the uncertain parameters within the optimization model together with concurrent observations of coparametrics.
We investigate three data-driven frameworks that integrate a machine learning prediction model within a programming sample average approximation (SAA) for approximating the solution to this problem.
arXiv Detail & Related papers (2022-07-27T14:45:04Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic
Optimization [1.7513645771137178]
We consider unconstrained optimization problems with no available gradient information.
We propose an adaptive sampling quasi-Newton method where we estimate the gradients of a simulation function using finite differences within a common random number framework.
We develop modified versions of a norm test and an inner product quasi-Newton test to control the sample sizes used in the approximations and provide global convergence results to the neighborhood of the optimal solution.
arXiv Detail & Related papers (2021-09-24T21:49:25Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Improving Maximum Likelihood Training for Text Generation with Density
Ratio Estimation [51.091890311312085]
We propose a new training scheme for auto-regressive sequence generative models, which is effective and stable when operating at large sample space encountered in text generation.
Our method stably outperforms Maximum Likelihood Estimation and other state-of-the-art sequence generative models in terms of both quality and diversity.
arXiv Detail & Related papers (2020-07-12T15:31:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.