Outlier Detection through Null Space Analysis of Neural Networks
- URL: http://arxiv.org/abs/2007.01263v1
- Date: Thu, 2 Jul 2020 17:17:21 GMT
- Title: Outlier Detection through Null Space Analysis of Neural Networks
- Authors: Matthew Cook, Alina Zare, Paul Gader
- Abstract summary: We use the concept of the null space to integrate an outlier detection method directly into a neural network used for classification.
Our method, called Null Space Analysis (NuSA) of neural networks, works by computing and controlling the magnitude of the null space projection as data is passed through a network.
Results are shown that indicate networks trained with NuSA retain their classification performance while also being able to detect outliers at rates similar to commonly used outlier detection algorithms.
- Score: 3.220347094114561
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Many machine learning classification systems lack competency awareness.
Specifically, many systems lack the ability to identify when outliers (e.g.,
samples that are distinct from and not represented in the training data
distribution) are being presented to the system. The ability to detect outliers
is of practical significance since it can help the system behave in an
reasonable way when encountering unexpected data. In prior work, outlier
detection is commonly carried out in a processing pipeline that is distinct
from the classification model. Thus, for a complete system that incorporates
outlier detection and classification, two models must be trained, increasing
the overall complexity of the approach. In this paper we use the concept of the
null space to integrate an outlier detection method directly into a neural
network used for classification. Our method, called Null Space Analysis (NuSA)
of neural networks, works by computing and controlling the magnitude of the
null space projection as data is passed through a network. Using these
projections, we can then calculate a score that can differentiate between
normal and abnormal data. Results are shown that indicate networks trained with
NuSA retain their classification performance while also being able to detect
outliers at rates similar to commonly used outlier detection algorithms.
Related papers
- Mutual Information Learned Classifiers: an Information-theoretic
Viewpoint of Training Deep Learning Classification Systems [9.660129425150926]
Cross entropy loss can easily lead us to find models which demonstrate severe overfitting behavior.
In this paper, we prove that the existing cross entropy loss minimization for training DNN classifiers essentially learns the conditional entropy of the underlying data distribution.
We propose a mutual information learning framework where we train DNN classifiers via learning the mutual information between the label and input.
arXiv Detail & Related papers (2022-10-03T15:09:19Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Hyperdimensional Computing for Efficient Distributed Classification with
Randomized Neural Networks [5.942847925681103]
We study distributed classification, which can be employed in situations were data cannot be stored at a central location nor shared.
We propose a more efficient solution for distributed classification by making use of a lossy compression approach applied when sharing the local classifiers with other agents.
arXiv Detail & Related papers (2021-06-02T01:33:56Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Learning from Incomplete Features by Simultaneous Training of Neural
Networks and Sparse Coding [24.3769047873156]
This paper addresses the problem of training a classifier on a dataset with incomplete features.
We assume that different subsets of features (random or structured) are available at each data instance.
A new supervised learning method is developed to train a general classifier, using only a subset of features per sample.
arXiv Detail & Related papers (2020-11-28T02:20:39Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
Finding an interpretable non-redundant representation of real-world data is one of the key problems in Machine Learning.
We propose a novel method of using data augmentations when training autoencoders.
We train a Variational Autoencoder in such a way, that it makes transformation outcome predictable by auxiliary network.
arXiv Detail & Related papers (2020-10-10T14:04:44Z) - Analysing Risk of Coronary Heart Disease through Discriminative Neural
Networks [18.124078832445967]
In critical applications like diagnostics, this class imbalance cannot be overlooked.
We depict how we can handle this class imbalance through neural networks using a discriminative model and contrastive loss.
arXiv Detail & Related papers (2020-06-17T06:30:00Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
We show that detecting and relabelling certain OOD instances, rather than discarding them, can have a positive effect on learning.
The proposed method is shown to improve the performance of convolutional neural networks by a significant margin.
arXiv Detail & Related papers (2020-02-11T21:08:06Z) - GIM: Gaussian Isolation Machines [40.7916016364212]
In many cases, neural network classifiers are exposed to input data that is outside of their training distribution data.
We present a novel hybrid (generative-discriminative) classifier aimed at solving the problem arising when OOD data is encountered.
The proposed GIM's novelty lies in its discriminative performance and generative capabilities, a combination of characteristics not usually seen in a single classifier.
arXiv Detail & Related papers (2020-02-06T09:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.