Integrating Neural Networks and Dictionary Learning for Multidimensional
Clinical Characterizations from Functional Connectomics Data
- URL: http://arxiv.org/abs/2007.01930v1
- Date: Fri, 3 Jul 2020 20:14:45 GMT
- Title: Integrating Neural Networks and Dictionary Learning for Multidimensional
Clinical Characterizations from Functional Connectomics Data
- Authors: Niharika Shimona D'Souza, Mary Beth Nebel, Nicholas Wymbs, Stewart
Mostofsky, and Archana Venkataraman
- Abstract summary: We propose a unified framework that combines neural networks with dictionary learning to model complex interactions between resting state functional MRI and behavioral data.
We evaluate our combined model on a multi-score prediction task using 52 patients diagnosed with Autism Spectrum Disorder (ASD)
Our integrated framework outperforms state-of-the-art methods in a ten-fold cross validated setting to predict three different measures of clinical severity.
- Score: 5.382679710017696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a unified optimization framework that combines neural networks
with dictionary learning to model complex interactions between resting state
functional MRI and behavioral data. The dictionary learning objective
decomposes patient correlation matrices into a collection of shared basis
networks and subject-specific loadings. These subject-specific features are
simultaneously input into a neural network that predicts multidimensional
clinical information. Our novel optimization framework combines the gradient
information from the neural network with that of a conventional matrix
factorization objective. This procedure collectively estimates the basis
networks, subject loadings, and neural network weights most informative of
clinical severity. We evaluate our combined model on a multi-score prediction
task using 52 patients diagnosed with Autism Spectrum Disorder (ASD). Our
integrated framework outperforms state-of-the-art methods in a ten-fold cross
validated setting to predict three different measures of clinical severity.
Related papers
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - Ensembling Neural Networks for Improved Prediction and Privacy in Early
Diagnosis of Sepsis [13.121103500410156]
Ensembling neural networks is a technique for improving the generalization error of neural networks.
We show that this technique is an ideal fit for machine learning on medical data.
We show that one can build an ensemble of a few selected patient-specific models that outperforms a single model trained on much larger pooled datasets.
arXiv Detail & Related papers (2022-09-01T13:24:14Z) - Initial Study into Application of Feature Density and
Linguistically-backed Embedding to Improve Machine Learning-based
Cyberbullying Detection [54.83707803301847]
The research was conducted on a Formspring dataset provided in a Kaggle competition on automatic cyberbullying detection.
The study confirmed the effectiveness of Neural Networks in cyberbullying detection and the correlation between classifier performance and Feature Density.
arXiv Detail & Related papers (2022-06-04T03:17:15Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning
to Integrate Multimodal and Dynamic Functional Connectomics data for
Multidimensional Clinical Characterizations [7.973810752596346]
We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography.
Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores.
Our hybrid model outperforms several state-of-the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization.
arXiv Detail & Related papers (2020-08-27T23:43:56Z) - A Joint Network Optimization Framework to Predict Clinical Severity from
Resting State Functional MRI Data [5.774786149181392]
We propose a novel framework to predict clinical severity from resting state fMRI (rs-fMRI) data.
We validate our framework on two separate datasets in a ten fold cross validation setting.
arXiv Detail & Related papers (2020-08-27T23:43:25Z) - A Deep-Generative Hybrid Model to Integrate Multimodal and Dynamic
Connectivity for Predicting Spectrum-Level Deficits in Autism [7.593051703048267]
The generative part of our framework is a structurally-regularized Dynamic Dictionary Learning (sr-DDL) model.
The deep part of our framework is an LSTM-ANN block, which models the temporal evolution of the patient sr-DDL loadings to predict multidimensional clinical severity.
We validate our framework on a multi-score prediction task in 57 patients diagnosed with Autism Spectrum Disorder (ASD)
arXiv Detail & Related papers (2020-07-03T20:18:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.