Inference Stage Optimization for Cross-scenario 3D Human Pose Estimation
- URL: http://arxiv.org/abs/2007.02054v1
- Date: Sat, 4 Jul 2020 09:45:18 GMT
- Title: Inference Stage Optimization for Cross-scenario 3D Human Pose Estimation
- Authors: Jianfeng Zhang, Xuecheng Nie, Jiashi Feng
- Abstract summary: Existing 3D pose estimation models suffer performance drop when applying to new scenarios with unseen poses.
We propose a novel framework, Inference Stage Optimization (ISO), for improving the generalizability of 3D pose models.
Remarkably, it yields new state-of-the-art of 83.6% 3D PCK on MPI-INF-3DHP, improving upon the previous best result by 9.7%.
- Score: 97.93687743378106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing 3D human pose estimation models suffer performance drop when
applying to new scenarios with unseen poses due to their limited
generalizability. In this work, we propose a novel framework, Inference Stage
Optimization (ISO), for improving the generalizability of 3D pose models when
source and target data come from different pose distributions. Our main insight
is that the target data, even though not labeled, carry valuable priors about
their underlying distribution. To exploit such information, the proposed ISO
performs geometry-aware self-supervised learning (SSL) on each single target
instance and updates the 3D pose model before making prediction. In this way,
the model can mine distributional knowledge about the target scenario and
quickly adapt to it with enhanced generalization performance. In addition, to
handle sequential target data, we propose an online mode for implementing our
ISO framework via streaming the SSL, which substantially enhances its
effectiveness. We systematically analyze why and how our ISO framework works on
diverse benchmarks under cross-scenario setup. Remarkably, it yields new
state-of-the-art of 83.6% 3D PCK on MPI-INF-3DHP, improving upon the previous
best result by 9.7%. Code will be released.
Related papers
- UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Uncertainty-Aware Testing-Time Optimization for 3D Human Pose Estimation [68.75387874066647]
We propose an Uncertainty-Aware testing-time optimization framework for 3D human pose estimation.
Our approach outperforms the previous best result by a large margin of 4.5% on Human3.6M.
arXiv Detail & Related papers (2024-02-04T04:28:02Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce two novel components: the Redundant Feature Eliminator (RFE) and the Spatial Noise Compensator (SNC)
Considering the imbalance in existing 3D datasets, we also propose new evaluation metrics that offer a more nuanced assessment of a 3D FSCIL model.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - Efficient Text-Guided 3D-Aware Portrait Generation with Score
Distillation Sampling on Distribution [28.526714129927093]
We propose DreamPortrait, which aims to generate text-guided 3D-aware portraits in a single-forward pass for efficiency.
We further design a 3D-aware gated cross-attention mechanism to explicitly let the model perceive the correspondence between the text and the 3D-aware space.
arXiv Detail & Related papers (2023-06-03T11:08:38Z) - A generic diffusion-based approach for 3D human pose prediction in the
wild [68.00961210467479]
3D human pose forecasting, i.e., predicting a sequence of future human 3D poses given a sequence of past observed ones, is a challenging-temporal task.
We provide a unified formulation in which incomplete elements (no matter in the prediction or observation) are treated as noise and propose a conditional diffusion model that denoises them and forecasts plausible poses.
We investigate our findings on four standard datasets and obtain significant improvements over the state-of-the-art.
arXiv Detail & Related papers (2022-10-11T17:59:54Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Distribution-Aware Single-Stage Models for Multi-Person 3D Pose
Estimation [29.430404703883084]
We present a novel Distribution-Aware Single-stage (DAS) model for tackling the challenging multi-person 3D pose estimation problem.
The proposed DAS model simultaneously localizes person positions and their corresponding body joints in the 3D camera space in a one-pass manner.
Comprehensive experiments on benchmarks CMU Panoptic and MuPoTS-3D demonstrate the superior efficiency of the proposed DAS model.
arXiv Detail & Related papers (2022-03-15T07:30:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.