Automatic Target Recognition on Synthetic Aperture Radar Imagery: A
Survey
- URL: http://arxiv.org/abs/2007.02106v2
- Date: Sat, 12 Dec 2020 21:11:18 GMT
- Title: Automatic Target Recognition on Synthetic Aperture Radar Imagery: A
Survey
- Authors: O. Kechagias-Stamatis and N. Aouf
- Abstract summary: We propose a taxonomy for the SAR ATR architectures, along with a comparison of the strengths and weaknesses of each method under both standard and extended operational conditions.
Despite MSTAR being the standard SAR ATR benchmarking dataset we also highlight its weaknesses and suggest future research directions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic Target Recognition (ATR) for military applications is one of the
core processes towards enhancing intelligencer and autonomously operating
military platforms. Spurred by this and given that Synthetic Aperture Radar
(SAR) presents several advantages over its counterpart data domains, this paper
surveys and assesses current SAR ATR architectures that employ the most popular
dataset for the SAR domain, namely the Moving and Stationary Target Acquisition
and Recognition (MSTAR) dataset. Based on the current methodology trends, we
propose a taxonomy for the SAR ATR architectures, along with a direct
comparison of the strengths and weaknesses of each method under both standard
and extended operational conditions. Additionally, despite MSTAR being the
standard SAR ATR benchmarking dataset we also highlight its weaknesses and
suggest future research directions.
Related papers
- IRASNet: Improved Feature-Level Clutter Reduction for Domain Generalized SAR-ATR [11.197991954581155]
This study proposes a framework particularly designed for domain-generalized SAR-ATR called IRASNet.
IRASNet enables effective feature-level clutter reduction and domain-invariant feature learning.
IRASNet not only enhances performance but also significantly improves feature-level clutter reduction, making it a valuable advancement in the field of radar image pattern recognition.
arXiv Detail & Related papers (2024-09-25T11:53:58Z) - Towards SAR Automatic Target Recognition MultiCategory SAR Image Classification Based on Light Weight Vision Transformer [11.983317593939688]
This paper tries to apply a lightweight vision transformer based model to classify SAR images.
The entire structure was verified by an open-accessed SAR data set.
arXiv Detail & Related papers (2024-05-18T11:24:52Z) - SARatrX: Towards Building A Foundation Model for SAR Target Recognition [22.770010893572973]
We make the first attempt towards building a foundation model for SAR ATR, termed SARatrX.
SARatrX learns generalizable representations via self-supervised learning (SSL) and provides a basis for label-efficient model adaptation to generic SAR target detection and classification tasks.
Specifically, SARatrX is trained on 0.18 M unlabelled SAR target samples, which are curated by combining contemporary benchmarks and constitute the largest publicly available dataset till now.
arXiv Detail & Related papers (2024-05-15T14:17:44Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - Benchmarking Deep Learning Classifiers for SAR Automatic Target
Recognition [7.858656052565242]
This paper comprehensively benchmarks several advanced deep learning models for SAR ATR with multiple distinct SAR imagery datasets.
We evaluate and compare the five classifiers concerning their classification accuracy runtime performance in terms of inference throughput and analytical performance.
No clear model winner emerges from all of our chosen metrics and a one model rules all case is doubtful in the domain of SAR ATR.
arXiv Detail & Related papers (2023-12-12T02:20:39Z) - Predicting Gradient is Better: Exploring Self-Supervised Learning for SAR ATR with a Joint-Embedding Predictive Architecture [23.375515181854254]
Self-Supervised Learning (SSL) methods can achieve various SAR Automatic Target Recognition (ATR) tasks with pre-training in large-scale unlabeled data.
SSL aims to construct supervision signals directly from the data, which minimizes the need for expensive expert annotation.
This study investigates an effective SSL method for SAR ATR, which can pave the way for a foundation model in SAR ATR.
arXiv Detail & Related papers (2023-11-26T01:05:55Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - LaMAR: Benchmarking Localization and Mapping for Augmented Reality [80.23361950062302]
We introduce LaMAR, a new benchmark with a comprehensive capture and GT pipeline that co-registers realistic trajectories and sensor streams captured by heterogeneous AR devices.
We publish a benchmark dataset of diverse and large-scale scenes recorded with head-mounted and hand-held AR devices.
arXiv Detail & Related papers (2022-10-19T17:58:17Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - Open-Set Recognition: A Good Closed-Set Classifier is All You Need [146.6814176602689]
We show that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes.
We use this correlation to boost the performance of the cross-entropy OSR 'baseline' by improving its closed-set accuracy.
We also construct new benchmarks which better respect the task of detecting semantic novelty.
arXiv Detail & Related papers (2021-10-12T17:58:59Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
Intent classification is a major task in spoken language understanding (SLU)
Recent works have shown that using extra data and labels can improve the OOD detection performance.
This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection.
arXiv Detail & Related papers (2021-06-28T08:27:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.