Deep Convolutional Neural Network for Identifying Seam-Carving Forgery
- URL: http://arxiv.org/abs/2007.02393v2
- Date: Tue, 7 Jul 2020 09:33:23 GMT
- Title: Deep Convolutional Neural Network for Identifying Seam-Carving Forgery
- Authors: Seung-Hun Nam, Wonhyuk Ahn, In-Jae Yu, Myung-Joon Kwon, Minseok Son,
Heung-Kyu Lee
- Abstract summary: We propose a convolutional neural network (CNN)-based approach to classifying seam-carving-based image for reduction and expansion.
Our work exhibits state-of-the-art performance in terms of three-class classification (original, seam inserted, and seam removed)
- Score: 10.324492319976798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Seam carving is a representative content-aware image retargeting approach to
adjust the size of an image while preserving its visually prominent content. To
maintain visually important content, seam-carving algorithms first calculate
the connected path of pixels, referred to as the seam, according to a defined
cost function and then adjust the size of an image by removing and duplicating
repeatedly calculated seams. Seam carving is actively exploited to overcome
diversity in the resolution of images between applications and devices; hence,
detecting the distortion caused by seam carving has become important in image
forensics. In this paper, we propose a convolutional neural network (CNN)-based
approach to classifying seam-carving-based image retargeting for reduction and
expansion. To attain the ability to learn low-level features, we designed a CNN
architecture comprising five types of network blocks specialized for capturing
subtle signals. An ensemble module is further adopted to both enhance
performance and comprehensively analyze the features in the local areas of the
given image. To validate the effectiveness of our work, extensive experiments
based on various CNN-based baselines were conducted. Compared to the baselines,
our work exhibits state-of-the-art performance in terms of three-class
classification (original, seam inserted, and seam removed). In addition, our
model with the ensemble module is robust for various unseen cases. The
experimental results also demonstrate that our method can be applied to
localize both seam-removed and seam-inserted areas.
Related papers
- Cross-Image Attention for Zero-Shot Appearance Transfer [68.43651329067393]
We introduce a cross-image attention mechanism that implicitly establishes semantic correspondences across images.
We harness three mechanisms that either manipulate the noisy latent codes or the model's internal representations throughout the denoising process.
Experiments show that our method is effective across a wide range of object categories and is robust to variations in shape, size, and viewpoint.
arXiv Detail & Related papers (2023-11-06T18:33:24Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - De-coupling and De-positioning Dense Self-supervised Learning [65.56679416475943]
Dense Self-Supervised Learning (SSL) methods address the limitations of using image-level feature representations when handling images with multiple objects.
We show that they suffer from coupling and positional bias, which arise from the receptive field increasing with layer depth and zero-padding.
We demonstrate the benefits of our method on COCO and on a new challenging benchmark, OpenImage-MINI, for object classification, semantic segmentation, and object detection.
arXiv Detail & Related papers (2023-03-29T18:07:25Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
We propose a joint learning strategy with deep texture and high-frequency features for CG image detection.
A semantic segmentation map is generated to guide the affine transformation operation.
The combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms.
arXiv Detail & Related papers (2022-09-07T17:30:40Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image.
We introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion.
We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations.
arXiv Detail & Related papers (2022-04-06T17:48:18Z) - An End-to-End Approach for Seam Carving Detection using Deep Neural
Networks [0.0]
Seam carving is a computational method capable of resizing images for both reduction and expansion based on its content, instead of the image geometry.
We propose an end-to-end approach to cope with the problem of automatic seam carving detection.
arXiv Detail & Related papers (2022-03-05T12:53:55Z) - Multi-Scale Feature Fusion: Learning Better Semantic Segmentation for
Road Pothole Detection [9.356003255288417]
This paper presents a novel pothole detection approach based on single-modal semantic segmentation.
It first extracts visual features from input images using a convolutional neural network.
A channel attention module then reweighs the channel features to enhance the consistency of different feature maps.
arXiv Detail & Related papers (2021-12-24T15:07:47Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Gigapixel Histopathological Image Analysis using Attention-based Neural
Networks [7.1715252990097325]
We propose a CNN structure consisting of a compressing path and a learning path.
Our method integrates both global and local information, is flexible with regard to the size of the input images and only requires weak image-level labels.
arXiv Detail & Related papers (2021-01-25T10:18:52Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.