Extended nonergodic regime and spin subdiffusion in disordered
SU(2)-symmetric Floquet systems
- URL: http://arxiv.org/abs/2007.02950v3
- Date: Tue, 1 Dec 2020 18:28:28 GMT
- Title: Extended nonergodic regime and spin subdiffusion in disordered
SU(2)-symmetric Floquet systems
- Authors: Zhi-Cheng Yang, Stuart Nicholls, and Meng Cheng
- Abstract summary: We explore thermalization and quantum dynamics in a one-dimensional disordered SU(2)-symmetric Floquet model.
Despite the absence of localization, we find an extended nonergodic regime at strong disorder where the system exhibits nonthermal behaviors.
- Score: 3.8654139025964875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore thermalization and quantum dynamics in a one-dimensional
disordered SU(2)-symmetric Floquet model, where a many-body localized phase is
prohibited by the non-abelian symmetry. Despite the absence of localization, we
find an extended nonergodic regime at strong disorder where the system exhibits
nonthermal behaviors. In the strong disorder regime, the level spacing
statistics exhibit neither a Wigner-Dyson nor a Poisson distribution, and the
spectral form factor does not show a linear-in-time growth at early times
characteristic of random matrix theory. The average entanglement entropy of the
Floquet eigenstates is subthermal, although violating an area-law scaling with
system sizes. We further compute the expectation value of local observables and
find strong deviations from the eigenstate thermalization hypothesis. The
infinite temperature spin autocorrelation function decays at long times as
$t^{-\beta}$ with $\beta < 0.5$, indicating subdiffusive transport at strong
disorders.
Related papers
- Critical spin models from holographic disorder [49.1574468325115]
We study the behavior of XXZ spin chains with a quasiperiodic disorder not present in continuum holography.
Our results suggest the existence of a class of critical phases whose symmetries are derived from models of discrete holography.
arXiv Detail & Related papers (2024-09-25T18:00:02Z) - Emergent Anomalous Hydrodynamics at Infinite Temperature in a Long-Range XXZ Model [14.297989605089663]
We find anomalous hydrodynamics in a spin-1/2 XXZ chain with power-law couplings.
We quantify the degree of quantum chaos using the Kullback-Leibler divergence.
This work offers another deep understanding of emergent anomalous transport phenomena in a wider range of non-integrable quantum many-body systems.
arXiv Detail & Related papers (2024-03-26T17:50:04Z) - Dissipative preparation of a Floquet topological insulator in an optical lattice via bath engineering [44.99833362998488]
Floquet engineering is an important tool for realizing charge-neutral atoms in optical lattices.
We show that a driven-dissipative system approximates a topological insulator.
arXiv Detail & Related papers (2023-07-07T17:47:50Z) - Finite-size subthermal regime in disordered SU(N)-symmetric Heisenberg
chains [0.0]
We extend previous studies of the SU(2)-symmetric disordered Heisenberg model to larger systems.
We simulate quench dynamics from weakly entangled initial states up to long times, finding robust subthermal behavior at stronger disorder.
Our findings demonstrate the robustness of the subthermal regime in spin chains with non-Abelian continuous symmetry.
arXiv Detail & Related papers (2023-04-06T14:26:05Z) - Nonadiabatic transitions in non-Hermitian $\mathcal{PT}$-symmetric
two-level systems [3.7440572759222692]
We systematically characterize the evolution of time-parity systems with spin-dependent dissipations.
We find that the behaviors of particle probability on the two levels show initial-state-independent redistribution in the slow-speed limit.
The predicted equal-distribution phenomenon may be employed to identify gap closing from anti-crossing between two energy bands.
arXiv Detail & Related papers (2023-01-25T02:11:38Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Entanglement Measures in a Nonequilibrium Steady State: Exact Results in
One Dimension [0.0]
Entanglement plays a prominent role in the study of condensed matter many-body systems.
We show that the scaling of entanglement with the length of a subsystem is highly unusual, containing both a volume-law linear term and a logarithmic term.
arXiv Detail & Related papers (2021-05-03T10:35:09Z) - Partial thermalisation of a two-state system coupled to a finite quantum
bath [0.0]
The eigenstate thermalisation hypothesis (ETH) is a statistical characterisation of eigen-energies, eigenstates and matrix elements of local operators in thermalising quantum systems.
We develop an ETH-like ansatz of a partially thermalising system composed of a spin-1/2 coupled to a finite quantum bath.
arXiv Detail & Related papers (2021-04-07T17:59:57Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.