Manifold Learning via Manifold Deflation
- URL: http://arxiv.org/abs/2007.03315v1
- Date: Tue, 7 Jul 2020 10:04:28 GMT
- Title: Manifold Learning via Manifold Deflation
- Authors: Daniel Ting and Michael I. Jordan
- Abstract summary: dimensionality reduction methods provide a valuable means to visualize and interpret high-dimensional data.
Many popular methods can fail dramatically, even on simple two-dimensional Manifolds.
This paper presents an embedding method for a novel, incremental tangent space estimator that incorporates global structure as coordinates.
Empirically, we show our algorithm recovers novel and interesting embeddings on real-world and synthetic datasets.
- Score: 105.7418091051558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonlinear dimensionality reduction methods provide a valuable means to
visualize and interpret high-dimensional data. However, many popular methods
can fail dramatically, even on simple two-dimensional manifolds, due to
problems such as vulnerability to noise, repeated eigendirections, holes in
convex bodies, and boundary bias. We derive an embedding method for Riemannian
manifolds that iteratively uses single-coordinate estimates to eliminate
dimensions from an underlying differential operator, thus "deflating" it. These
differential operators have been shown to characterize any local, spectral
dimensionality reduction method. The key to our method is a novel, incremental
tangent space estimator that incorporates global structure as coordinates are
added. We prove its consistency when the coordinates converge to true
coordinates. Empirically, we show our algorithm recovers novel and interesting
embeddings on real-world and synthetic datasets.
Related papers
- Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
Gaussian process regression is widely used to provide well-calibrated uncertainty estimates.
It struggles with high-dimensional data because of the implicit low-dimensional manifold upon which the data actually lies.
In this paper we propose a technique capable of inferring implicit structure directly from data (labeled and unlabeled) in a fully differentiable way.
arXiv Detail & Related papers (2023-10-30T09:52:48Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
We propose a more general heat kernel based manifold embedding method that we call heat geodesic embeddings.
Results show that our method outperforms existing state of the art in preserving ground truth manifold distances.
We also showcase our method on single cell RNA-sequencing datasets with both continuum and cluster structure.
arXiv Detail & Related papers (2023-05-30T13:58:50Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
In this letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces.
We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting.
This suggests that evolutive pressure acts on a low-dimensional manifold despite the high-dimensionality of sequences' space.
arXiv Detail & Related papers (2022-07-20T06:38:36Z) - The Manifold Scattering Transform for High-Dimensional Point Cloud Data [16.500568323161563]
We present practical schemes for implementing the manifold scattering transform to datasets arising in naturalistic systems.
We show that our methods are effective for signal classification and manifold classification tasks.
arXiv Detail & Related papers (2022-06-21T02:15:00Z) - Learning Low-Dimensional Nonlinear Structures from High-Dimensional
Noisy Data: An Integral Operator Approach [5.975670441166475]
We propose a kernel-spectral embedding algorithm for learning low-dimensional nonlinear structures from high-dimensional and noisy observations.
The algorithm employs an adaptive bandwidth selection procedure which does not rely on prior knowledge of the underlying manifold.
The obtained low-dimensional embeddings can be further utilized for downstream purposes such as data visualization, clustering and prediction.
arXiv Detail & Related papers (2022-02-28T22:46:34Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
Most existing manifold learning algorithms replace the original data with lower dimensional coordinates.
This article proposes a new methodology for addressing these problems, allowing the estimated manifold between fitted data points.
arXiv Detail & Related papers (2021-10-14T15:50:38Z) - A Local Similarity-Preserving Framework for Nonlinear Dimensionality
Reduction with Neural Networks [56.068488417457935]
We propose a novel local nonlinear approach named Vec2vec for general purpose dimensionality reduction.
To train the neural network, we build the neighborhood similarity graph of a matrix and define the context of data points.
Experiments of data classification and clustering on eight real datasets show that Vec2vec is better than several classical dimensionality reduction methods in the statistical hypothesis test.
arXiv Detail & Related papers (2021-03-10T23:10:47Z) - Sample complexity and effective dimension for regression on manifolds [13.774258153124205]
We consider the theory of regression on a manifold using kernel reproducing Hilbert space methods.
We show that certain spaces of smooth functions on a manifold are effectively finite-dimensional, with a complexity that scales according to the manifold dimension.
arXiv Detail & Related papers (2020-06-13T14:09:55Z) - Learning Flat Latent Manifolds with VAEs [16.725880610265378]
We propose an extension to the framework of variational auto-encoders, where the Euclidean metric is a proxy for the similarity between data points.
We replace the compact prior typically used in variational auto-encoders with a recently presented, more expressive hierarchical one.
We evaluate our method on a range of data-sets, including a video-tracking benchmark.
arXiv Detail & Related papers (2020-02-12T09:54:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.