Anomalous non-classicality via correlative and entropic Bell
inequalities
- URL: http://arxiv.org/abs/2007.03450v2
- Date: Sun, 1 Nov 2020 14:43:04 GMT
- Title: Anomalous non-classicality via correlative and entropic Bell
inequalities
- Authors: Sabiha Durucan and Alexei Grinbaum
- Abstract summary: We find that the violation of the correlative Bell inequality does not entail a violation of the correlative Bell inequality for certain parameter values.
This anomaly helps to precisely qualify the type of non-classical resource.
We identify the 'exotic' type that gives rise to non-classical resources under all non-equivalent operational party assignments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entropic Bell inequalities witness contextual probability distributions on
sets of jointly measurable observables. We find that their violation does not
entail a violation of the correlative Bell inequality for certain parameter
values. This anomaly between the entropic and correlative measures of
contextuality helps to precisely qualify the type of non-classical resource. We
determine its numerical bounds inviting their experimental verification. Among
the permutations of observables that keep this anomaly in place, we identify
the 'exotic' type that gives rise to non-classical resources under all
non-equivalent operational party assignments in a device-independent approach.
Related papers
- Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
This work introduces a novel principle for disentanglement we call mechanism sparsity regularization.
We propose a representation learning method that induces disentanglement by simultaneously learning the latent factors.
We show that the latent factors can be recovered by regularizing the learned causal graph to be sparse.
arXiv Detail & Related papers (2024-01-10T02:38:21Z) - Invariant Causal Set Covering Machines [64.86459157191346]
Rule-based models, such as decision trees, appeal to practitioners due to their interpretable nature.
However, the learning algorithms that produce such models are often vulnerable to spurious associations and thus, they are not guaranteed to extract causally-relevant insights.
We propose Invariant Causal Set Covering Machines, an extension of the classical Set Covering Machine algorithm for conjunctions/disjunctions of binary-valued rules that provably avoids spurious associations.
arXiv Detail & Related papers (2023-06-07T20:52:01Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Quantitative non-classicality of mediated interactions [0.5033155053523042]
We show that the gain of quantum entanglement between the masses indicates non-classicality of the states of the whole tripartite system.
We derive inequalities whose violation indicates non-commutativity and non-decomposability.
We give applications of these techniques in two different fields: for detecting non-classicality of gravitational interaction and in bounding the Trotter error in quantum simulations.
arXiv Detail & Related papers (2023-03-22T09:58:26Z) - Quadratic pseudospectrum for identifying localized states [68.8204255655161]
quadratic pseudospectrum is a method for approaching systems with incompatible observables.
We derive an important estimate relating the Clifford and quadratic pseudospectra.
We prove that the quadratic pseudospectrum is local, and derive bounds on the errors that are incurred by truncating the system in the vicinity of where the pseudospectrum is being calculated.
arXiv Detail & Related papers (2022-04-22T00:57:09Z) - Nonclassical correlations of radiation in relation to Bell nonlocality [0.0]
We analyze nonclassical correlations between outcomes of measurements conducted on two spatial radiation modes.
Nonclassical correlations are related to Bell nonlocality, the former being a more general class of quantum correlations.
arXiv Detail & Related papers (2021-12-13T21:17:18Z) - Nonclassical correlations in decaying systems [0.0]
Correlations of weak measurements in the noninvasive limit violate the classical bound for a universal class of systems.
The phenomenon can be experimentally observed by continuous weak measurements and a large class of observables.
arXiv Detail & Related papers (2021-10-21T07:28:49Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
Independent component analysis (ICA) refers to an ensemble of methods which formalize this goal and provide estimation procedure for practical application.
We show that the latent variables can be recovered up to a permutation if one regularizes the latent mechanisms to be sparse.
arXiv Detail & Related papers (2021-07-21T14:22:14Z) - Causal networks and freedom of choice in Bell's theorem [0.7637291629898925]
We show that the level of measurement dependence can be quantitatively upper bounded if we arrange the Bell test within a network.
We also prove that these results can be adapted in order to derive non-linear Bell inequalities for a large class of causal networks.
arXiv Detail & Related papers (2021-05-12T15:14:17Z) - Effects of white noise on Bell theorem for qudits [1.7188280334580195]
We show that a variety of Bell inequalities can be derived by sequentially applying triangle inequalities.
A sufficient condition is presented to show quantum violations of the Bell-type inequalities with infinitesimal values of critical visibility.
arXiv Detail & Related papers (2020-12-31T07:03:41Z) - On the complex behaviour of the density in composite quantum systems [62.997667081978825]
We study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system.
We prove that it is a non-perturbative property and we find out a large/small coupling constant duality.
Inspired by the proof of KAM theorem, we are able to deal with this problem by introducing a cut-off in energies that eliminates these small denominators.
arXiv Detail & Related papers (2020-04-14T21:41:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.