Improving Adversarial Robustness by Enforcing Local and Global
Compactness
- URL: http://arxiv.org/abs/2007.05123v1
- Date: Fri, 10 Jul 2020 00:43:06 GMT
- Title: Improving Adversarial Robustness by Enforcing Local and Global
Compactness
- Authors: Anh Bui, Trung Le, He Zhao, Paul Montague, Olivier deVel, Tamas
Abraham, Dinh Phung
- Abstract summary: Adversary training is the most successful method that consistently resists a wide range of attacks.
We propose the Adversary Divergence Reduction Network which enforces local/global compactness and the clustering assumption.
The experimental results demonstrate that augmenting adversarial training with our proposed components can further improve the robustness of the network.
- Score: 19.8818435601131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fact that deep neural networks are susceptible to crafted perturbations
severely impacts the use of deep learning in certain domains of application.
Among many developed defense models against such attacks, adversarial training
emerges as the most successful method that consistently resists a wide range of
attacks. In this work, based on an observation from a previous study that the
representations of a clean data example and its adversarial examples become
more divergent in higher layers of a deep neural net, we propose the Adversary
Divergence Reduction Network which enforces local/global compactness and the
clustering assumption over an intermediate layer of a deep neural network. We
conduct comprehensive experiments to understand the isolating behavior of each
component (i.e., local/global compactness and the clustering assumption) and
compare our proposed model with state-of-the-art adversarial training methods.
The experimental results demonstrate that augmenting adversarial training with
our proposed components can further improve the robustness of the network,
leading to higher unperturbed and adversarial predictive performances.
Related papers
- Towards Improving Robustness Against Common Corruptions using Mixture of
Class Specific Experts [10.27974860479791]
This paper introduces a novel paradigm known as the Mixture of Class-Specific Expert Architecture.
The proposed architecture aims to mitigate vulnerabilities associated with common neural network structures.
arXiv Detail & Related papers (2023-11-16T20:09:47Z) - Beyond Empirical Risk Minimization: Local Structure Preserving
Regularization for Improving Adversarial Robustness [28.853413482357634]
Local Structure Preserving (LSP) regularization aims to preserve the local structure of the input space in the learned embedding space.
In this work, we propose a novel Local Structure Preserving (LSP) regularization, which aims to preserve the local structure of the input space in the learned embedding space.
arXiv Detail & Related papers (2023-03-29T17:18:58Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - Defensive Tensorization [113.96183766922393]
We propose tensor defensiveization, an adversarial defence technique that leverages a latent high-order factorization of the network.
We empirically demonstrate the effectiveness of our approach on standard image classification benchmarks.
We validate the versatility of our approach across domains and low-precision architectures by considering an audio task and binary networks.
arXiv Detail & Related papers (2021-10-26T17:00:16Z) - Pruning in the Face of Adversaries [0.0]
We evaluate the impact of neural network pruning on the adversarial robustness against L-0, L-2 and L-infinity attacks.
Our results confirm that neural network pruning and adversarial robustness are not mutually exclusive.
We extend our analysis to situations that incorporate additional assumptions on the adversarial scenario and show that depending on the situation, different strategies are optimal.
arXiv Detail & Related papers (2021-08-19T09:06:16Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
It is well established that neural networks are vulnerable to adversarial examples, which are almost imperceptible on human vision.
Existing defenses are trend to harden the robustness of models against adversarial attacks.
We propose a novel method combined with additional noises and utilize the inconsistency strategy to detect adversarial examples.
arXiv Detail & Related papers (2020-09-06T13:57:17Z) - Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness [97.67477497115163]
We use mode connectivity to study the adversarial robustness of deep neural networks.
Our experiments cover various types of adversarial attacks applied to different network architectures and datasets.
Our results suggest that mode connectivity offers a holistic tool and practical means for evaluating and improving adversarial robustness.
arXiv Detail & Related papers (2020-04-30T19:12:50Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturb is an end-to-end feature perturbation learning approach for improving the adversarial robustness of deep neural networks.
Inspired by the Expectation-Maximization, an alternating back-propagation training algorithm is introduced to train the network and noise parameters consecutively.
arXiv Detail & Related papers (2020-03-02T18:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.