Prediction of Traffic Flow via Connected Vehicles
- URL: http://arxiv.org/abs/2007.05460v2
- Date: Fri, 4 Dec 2020 17:06:56 GMT
- Title: Prediction of Traffic Flow via Connected Vehicles
- Authors: Ranwa Al Mallah, Bilal Farooq, Alejandro Quintero
- Abstract summary: We propose a Short-term Traffic flow Prediction framework so that transportation authorities take early actions to control flow and prevent congestion.
We anticipate flow at future time frames on a target road segment based on historical flow data and innovative features such as real time feeds and trajectory data provided by Connected Vehicles (CV) technology.
We show how this novel approach allows advanced modelling by integrating into the forecasting of flow, the impact of various events that CV realistically encountered on segments along their trajectory.
- Score: 77.11902188162458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a Short-term Traffic flow Prediction (STP) framework so that
transportation authorities take early actions to control flow and prevent
congestion. We anticipate flow at future time frames on a target road segment
based on historical flow data and innovative features such as real time feeds
and trajectory data provided by Connected Vehicles (CV) technology. To cope
with the fact that existing approaches do not adapt to variation in traffic, we
show how this novel approach allows advanced modelling by integrating into the
forecasting of flow, the impact of the various events that CV realistically
encountered on segments along their trajectory. We solve the STP problem with a
Deep Neural Networks (DNN) in a multitask learning setting augmented by input
from CV. Results show that our approach, namely MTL-CV, with an average
Root-Mean-Square Error (RMSE) of 0.052, outperforms state-of-the-art ARIMA time
series (RMSE of 0.255) and baseline classifiers (RMSE of 0.122). Compared to
single task learning with Artificial Neural Network (ANN), ANN had a lower
performance, 0.113 for RMSE, than MTL-CV. MTL-CV learned historical
similarities between segments, in contrast to using direct historical trends in
the measure, because trends may not exist in the measure but do in the
similarities.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - Newell's theory based feature transformations for spatio-temporal
traffic prediction [0.0]
We propose a traffic flow physics-based transformation feature for Deep learning (DL) models for traffic flow forecasting.
This transformation incorporates Newell's uncongested and congested filters of traffic flows at the target locations, enabling the models to learn broader dynamics of the system.
An important advantage of our framework is its ability to be transferred to new locations where data is unavailable.
arXiv Detail & Related papers (2023-07-12T06:31:43Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Accurate non-stationary short-term traffic flow prediction method [0.0]
This paper proposes a Long Short-Term Memory (LSTM) based method that can forecast short-term traffic flow precisely.
The proposed method performs favorably against other state-of-the-art methods with better performance on extreme outliers, delay effects, and trend-changing responses.
arXiv Detail & Related papers (2022-05-01T17:11:34Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
Streaming perception is proposed to jointly evaluate the latency and accuracy into a single metric for video online perception.
We build a simple and effective framework for streaming perception.
Our method achieves competitive performance on Argoverse-HD dataset and improves the AP by 4.9% compared to the strong baseline.
arXiv Detail & Related papers (2022-03-23T11:33:27Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
We propose a model to predict traffic speed under the impact of construction work.
The model is based on the powerful attention-based,temporal graph convolution architecture but utilizes various channels to integrate different sources of information.
The model is evaluated on two benchmark datasets and a novel dataset we have collected over the bustling roadway's corner in Northern Virginia.
arXiv Detail & Related papers (2021-10-04T16:07:37Z) - TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on
Graph Neural Networks and Continual Learning [10.205873494981633]
We propose a Streaming Traffic Flow Forecasting Framework, TrafficStream, based on Graph Neural Networks (GNNs) and Continual Learning (CL)
A JS-divergence-based algorithm is proposed to mine new traffic patterns.
We construct a streaming traffic dataset to verify the efficiency and effectiveness of our model.
arXiv Detail & Related papers (2021-06-11T09:42:37Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.