Improved Detection of Adversarial Images Using Deep Neural Networks
- URL: http://arxiv.org/abs/2007.05573v1
- Date: Fri, 10 Jul 2020 19:02:24 GMT
- Title: Improved Detection of Adversarial Images Using Deep Neural Networks
- Authors: Yutong Gao, Yi Pan
- Abstract summary: Recent studies indicate that machine learning models used for classification tasks are vulnerable to adversarial examples.
We propose a new approach called Feature Map Denoising to detect the adversarial inputs.
We show the performance of detection on a mixed dataset consisting of adversarial examples.
- Score: 2.3993545400014873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning techniques are immensely deployed in both industry and
academy. Recent studies indicate that machine learning models used for
classification tasks are vulnerable to adversarial examples, which limits the
usage of applications in the fields with high precision requirements. We
propose a new approach called Feature Map Denoising to detect the adversarial
inputs and show the performance of detection on the mixed dataset consisting of
adversarial examples generated by different attack algorithms, which can be
used to associate with any pre-trained DNNs at a low cost. Wiener filter is
also introduced as the denoise algorithm to the defense model, which can
further improve performance. Experimental results indicate that good accuracy
of detecting the adversarial examples can be achieved through our Feature Map
Denoising algorithm.
Related papers
- Adversarial Examples Detection with Enhanced Image Difference Features
based on Local Histogram Equalization [20.132066800052712]
We propose an adversarial example detection framework based on a high-frequency information enhancement strategy.
This framework can effectively extract and amplify the feature differences between adversarial examples and normal examples.
arXiv Detail & Related papers (2023-05-08T03:14:01Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Model2Detector:Widening the Information Bottleneck for
Out-of-Distribution Detection using a Handful of Gradient Steps [12.263417500077383]
Out-of-distribution detection is an important capability that has long eluded vanilla neural networks.
Recent advances in inference-time out-of-distribution detection help mitigate some of these problems.
We show how our method consistently outperforms the state-of-the-art in detection accuracy on popular image datasets.
arXiv Detail & Related papers (2022-02-22T23:03:40Z) - Detecting Adversaries, yet Faltering to Noise? Leveraging Conditional
Variational AutoEncoders for Adversary Detection in the Presence of Noisy
Images [0.7734726150561086]
Conditional Variational AutoEncoders (CVAE) are surprisingly good at detecting imperceptible image perturbations.
We show how CVAEs can be effectively used to detect adversarial attacks on image classification networks.
arXiv Detail & Related papers (2021-11-28T20:36:27Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - Diffusion-Based Representation Learning [65.55681678004038]
We augment the denoising score matching framework to enable representation learning without any supervised signal.
In contrast, the introduced diffusion-based representation learning relies on a new formulation of the denoising score matching objective.
Using the same approach, we propose to learn an infinite-dimensional latent code that achieves improvements of state-of-the-art models on semi-supervised image classification.
arXiv Detail & Related papers (2021-05-29T09:26:02Z) - CDLNet: Robust and Interpretable Denoising Through Deep Convolutional
Dictionary Learning [6.6234935958112295]
Unrolled optimization networks propose an interpretable alternative to constructing deep neural networks.
We show that the proposed model outperforms the state-of-the-art denoising models when scaled to similar parameter count.
arXiv Detail & Related papers (2021-03-05T01:15:59Z) - Adversarial Examples for Unsupervised Machine Learning Models [71.81480647638529]
Adrial examples causing evasive predictions are widely used to evaluate and improve the robustness of machine learning models.
We propose a framework of generating adversarial examples for unsupervised models and demonstrate novel applications to data augmentation.
arXiv Detail & Related papers (2021-03-02T17:47:58Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Evolving Deep Convolutional Neural Networks for Hyperspectral Image
Denoising [6.869192200282213]
We propose a novel algorithm to automatically build an optimal Convolutional Neural Network (CNN) to effectively denoise HSIs.
The experiments of the proposed algorithm have been well-designed and compared against the state-of-the-art peer competitors.
arXiv Detail & Related papers (2020-08-15T03:04:11Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.