Illuminating Mario Scenes in the Latent Space of a Generative
Adversarial Network
- URL: http://arxiv.org/abs/2007.05674v4
- Date: Mon, 21 Jun 2021 04:14:08 GMT
- Title: Illuminating Mario Scenes in the Latent Space of a Generative
Adversarial Network
- Authors: Matthew C. Fontaine, Ruilin Liu, Ahmed Khalifa, Jignesh Modi, Julian
Togelius, Amy K. Hoover, Stefanos Nikolaidis
- Abstract summary: We show how designers may specify gameplay measures to our system and extract high-quality (playable) levels with a diverse range of level mechanics.
An online user study shows how the different mechanics of the automatically generated levels affect subjective ratings of their perceived difficulty and appearance.
- Score: 11.055580854275474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative adversarial networks (GANs) are quickly becoming a ubiquitous
approach to procedurally generating video game levels. While GAN generated
levels are stylistically similar to human-authored examples, human designers
often want to explore the generative design space of GANs to extract
interesting levels. However, human designers find latent vectors opaque and
would rather explore along dimensions the designer specifies, such as number of
enemies or obstacles. We propose using state-of-the-art quality diversity
algorithms designed to optimize continuous spaces, i.e. MAP-Elites with a
directional variation operator and Covariance Matrix Adaptation MAP-Elites, to
efficiently explore the latent space of a GAN to extract levels that vary
across a set of specified gameplay measures. In the benchmark domain of Super
Mario Bros, we demonstrate how designers may specify gameplay measures to our
system and extract high-quality (playable) levels with a diverse range of level
mechanics, while still maintaining stylistic similarity to human authored
examples. An online user study shows how the different mechanics of the
automatically generated levels affect subjective ratings of their perceived
difficulty and appearance.
Related papers
- SceneHGN: Hierarchical Graph Networks for 3D Indoor Scene Generation
with Fine-Grained Geometry [92.24144643757963]
3D indoor scenes are widely used in computer graphics, with applications ranging from interior design to gaming to virtual and augmented reality.
High-quality 3D indoor scenes are highly demanded while it requires expertise and is time-consuming to design high-quality 3D indoor scenes manually.
We propose SCENEHGN, a hierarchical graph network for 3D indoor scenes that takes into account the full hierarchy from the room level to the object level, then finally to the object part level.
For the first time, our method is able to directly generate plausible 3D room content, including furniture objects with fine-grained geometry, and
arXiv Detail & Related papers (2023-02-16T15:31:59Z) - Spatial Steerability of GANs via Self-Supervision from Discriminator [123.27117057804732]
We propose a self-supervised approach to improve the spatial steerability of GANs without searching for steerable directions in the latent space.
Specifically, we design randomly sampled Gaussian heatmaps to be encoded into the intermediate layers of generative models as spatial inductive bias.
During inference, users can interact with the spatial heatmaps in an intuitive manner, enabling them to edit the output image by adjusting the scene layout, moving, or removing objects.
arXiv Detail & Related papers (2023-01-20T07:36:29Z) - Mario Plays on a Manifold: Generating Functional Content in Latent Space
through Differential Geometry [7.863826008567604]
We propose a method for reliable and random walks in the latent spaces of Categorical VAEs.
We test our method with "Super Mario Bros" and "The Legend of Zelda" levels.
Results show that the geometry we propose is better able to interpolate and sample, reliably staying closer to parts of the latent space that decode to playable content.
arXiv Detail & Related papers (2022-05-31T20:39:56Z) - CCPT: Automatic Gameplay Testing and Validation with
Curiosity-Conditioned Proximal Trajectories [65.35714948506032]
The Curiosity-Conditioned Proximal Trajectories (CCPT) method combines curiosity and imitation learning to train agents to explore.
We show how CCPT can explore complex environments, discover gameplay issues and design oversights in the process, and recognize and highlight them directly to game designers.
arXiv Detail & Related papers (2022-02-21T09:08:33Z) - EigenGAN: Layer-Wise Eigen-Learning for GANs [84.33920839885619]
EigenGAN is able to unsupervisedly mine interpretable and controllable dimensions from different generator layers.
By traversing the coefficient of a specific eigen-dimension, the generator can produce samples with continuous changes corresponding to a specific semantic attribute.
arXiv Detail & Related papers (2021-04-26T11:14:37Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
We propose Portfolio Monte Carlo Tree Search with Progressive Unpruning for playing a turn-based strategy game (Tribes)
We show how it can be parameterized so a quality-diversity algorithm (MAP-Elites) is used to achieve different play-styles while keeping a competitive level of play.
Our results show that this algorithm is capable of achieving these goals even for an extensive collection of game levels beyond those used for training.
arXiv Detail & Related papers (2021-04-17T20:33:24Z) - Level Generation for Angry Birds with Sequential VAE and Latent Variable
Evolution [25.262831218008202]
We develop a deep-generative-model-based level generation for the game domain of Angry Birds.
Experiments show that the proposed level generator drastically improves the stability and diversity of generated levels.
arXiv Detail & Related papers (2021-04-13T11:23:39Z) - Generating and Blending Game Levels via Quality-Diversity in the Latent
Space of a Variational Autoencoder [7.919213739992465]
We present a level generation and game blending approach that combines the use of VAEs and QD algorithms.
Specifically, we train VAEs on game levels and then run the MAP-Elites QD algorithm using the learned latent space of the VAE as the search space.
arXiv Detail & Related papers (2021-02-24T18:44:23Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
Turn-based strategy games like Roguelikes, for example, present unique challenges to Deep Reinforcement Learning (DRL)
We propose two network architectures to better handle complex categorical state spaces and to mitigate the need for retraining forced by design decisions.
arXiv Detail & Related papers (2020-12-07T08:47:25Z) - Interactive Evolution and Exploration Within Latent Level-Design Space
of Generative Adversarial Networks [8.091708140619946]
Latent Variable Evolution (LVE) has recently been applied to game levels.
This paper introduces a tool for interactive LVE of tile-based levels for games.
The tool also allows for direct exploration of the latent dimensions, and allows users to play discovered levels.
arXiv Detail & Related papers (2020-03-31T22:52:17Z) - Controllable Level Blending between Games using Variational Autoencoders [6.217860411034386]
We train a VAE on level data from Super Mario Bros. and Kid Icarus, enabling it to capture the latent space spanning both games.
We then use this space to generate level segments that combine properties of levels from both games.
We argue that these affordances make the VAE-based approach especially suitable for co-creative level design.
arXiv Detail & Related papers (2020-02-27T01:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.