Representation Learning via Adversarially-Contrastive Optimal Transport
- URL: http://arxiv.org/abs/2007.05840v1
- Date: Sat, 11 Jul 2020 19:46:18 GMT
- Title: Representation Learning via Adversarially-Contrastive Optimal Transport
- Authors: Anoop Cherian, Shuchin Aeron
- Abstract summary: We set the problem within the context of contrastive representation learning.
We propose a framework connecting Wasserstein GANs with a novel classifier.
Our results demonstrate competitive performance against challenging baselines.
- Score: 40.52344027750609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the problem of learning compact (low-dimensional)
representations for sequential data that captures its implicit spatio-temporal
cues. To maximize extraction of such informative cues from the data, we set the
problem within the context of contrastive representation learning and to that
end propose a novel objective via optimal transport. Specifically, our
formulation seeks a low-dimensional subspace representation of the data that
jointly (i) maximizes the distance of the data (embedded in this subspace) from
an adversarial data distribution under the optimal transport, a.k.a. the
Wasserstein distance, (ii) captures the temporal order, and (iii) minimizes the
data distortion. To generate the adversarial distribution, we propose a novel
framework connecting Wasserstein GANs with a classifier, allowing a principled
mechanism for producing good negative distributions for contrastive learning,
which is currently a challenging problem. Our full objective is cast as a
subspace learning problem on the Grassmann manifold and solved via Riemannian
optimization. To empirically study our formulation, we provide experiments on
the task of human action recognition in video sequences. Our results
demonstrate competitive performance against challenging baselines.
Related papers
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - Optimal Transport for Structure Learning Under Missing Data [31.240965564055138]
We propose a score-based algorithm for learning causal structures from missing data based on optimal transport.
Our framework is shown to recover the true causal structure more effectively than competing methods in most simulations and real-data settings.
arXiv Detail & Related papers (2024-02-23T10:49:04Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Disentangled Representation Learning with Transmitted Information Bottleneck [57.22757813140418]
We present textbfDisTIB (textbfTransmitted textbfInformation textbfBottleneck for textbfDisd representation learning), a novel objective that navigates the balance between information compression and preservation.
arXiv Detail & Related papers (2023-11-03T03:18:40Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solving flow-based distributionally robust optimization (DRO) problems with Wasserstein uncertainty sets.
We aim to find continuous worst-case distribution (also called the Least Favorable Distribution, LFD) and sample from it.
We demonstrate its usage in adversarial learning, distributionally robust hypothesis testing, and a new mechanism for data-driven distribution perturbation differential privacy.
arXiv Detail & Related papers (2023-10-30T03:53:31Z) - Transport with Support: Data-Conditional Diffusion Bridges [18.933928516349397]
We introduce the Iterative Smoothing Bridge (ISB) to solve constrained time-series data generation tasks.
We show that the ISB generalises well to high-dimensional data, is computationally efficient, and provides accurate estimates of the marginals at intermediate and terminal times.
arXiv Detail & Related papers (2023-01-31T13:50:16Z) - Cyclic Graph Attentive Match Encoder (CGAME): A Novel Neural Network For
OD Estimation [8.398623478484248]
Origin-Destination Estimation plays an important role in traffic management and traffic simulation in the era of Intelligent Transportation System (ITS)
Previous model-based models face the under-determined challenge, thus desperate demand for additional assumptions and extra data exists.
We propose Cyclic Graph Attentive Matching (C-GAME) based on a novel Graph Matcher with double-layer attention mechanism.
arXiv Detail & Related papers (2021-11-26T08:57:21Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.