Deep Network Interpolation for Accelerated Parallel MR Image
Reconstruction
- URL: http://arxiv.org/abs/2007.05993v1
- Date: Sun, 12 Jul 2020 13:58:07 GMT
- Title: Deep Network Interpolation for Accelerated Parallel MR Image
Reconstruction
- Authors: Chen Qin, Jo Schlemper, Kerstin Hammernik, Jinming Duan, Ronald M
Summers, and Daniel Rueckert
- Abstract summary: We present a deep network strategy for accelerated parallel MR image reconstruction.
In particular, we examine the network in parameter space between a source model that is formulated in an unroll scheme with L1 and SSIM losses and its counterpart that is trained with an adversarial loss.
- Score: 14.151673559127753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a deep network interpolation strategy for accelerated parallel MR
image reconstruction. In particular, we examine the network interpolation in
parameter space between a source model that is formulated in an unrolled scheme
with L1 and SSIM losses and its counterpart that is trained with an adversarial
loss. We show that by interpolating between the two different models of the
same network structure, the new interpolated network can model a trade-off
between perceptual quality and fidelity.
Related papers
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
Reparameterization aims to improve the generalization of deep neural networks by transforming convolutional layers into equivalent multi-branched structures during training.
We present a novel spatial gradient scaling method to redistribute learning focus among weights in convolutional networks.
arXiv Detail & Related papers (2023-03-05T17:57:33Z) - Backpropagation on Dynamical Networks [0.0]
We propose a network inference method based on the backpropagation through time (BPTT) algorithm commonly used to train recurrent neural networks.
An approximation of local node dynamics is first constructed using a neural network.
Freerun prediction performance with the resulting local models and weights was found to be comparable to the true system.
arXiv Detail & Related papers (2022-07-07T05:22:44Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
Recent advances in the design of convolutional neural network (CNN) have yielded significant improvements in the performance of image super-resolution (SR)
We propose a scale recurrent SR architecture built upon units containing series of dense connections within a residual block (Residual Dense Blocks (RDBs))
Our scale recurrent design delivers competitive performance for higher scale factors while being parametrically more efficient as compared to current state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-28T09:18:43Z) - PR-RRN: Pairwise-Regularized Residual-Recursive Networks for Non-rigid
Structure-from-Motion [58.75694870260649]
PR-RRN is a novel neural-network based method for Non-rigid Structure-from-Motion.
We propose two new pairwise regularizations to further regularize the reconstruction.
Our approach achieves state-of-the-art performance on CMU MOCAP and PASCAL3D+ dataset.
arXiv Detail & Related papers (2021-08-17T08:39:02Z) - Parallel mesh reconstruction streams for pose estimation of interacting
hands [2.0305676256390934]
We present a new multi-stream 3D mesh reconstruction network (MSMR-Net) for hand pose estimation from a single RGB image.
Our model consists of an image encoder followed by a mesh-convolution decoder composed of connected graph convolution layers.
arXiv Detail & Related papers (2021-04-25T10:14:15Z) - A Deep-Unfolded Reference-Based RPCA Network For Video
Foreground-Background Separation [86.35434065681925]
This paper proposes a new deep-unfolding-based network design for the problem of Robust Principal Component Analysis (RPCA)
Unlike existing designs, our approach focuses on modeling the temporal correlation between the sparse representations of consecutive video frames.
Experimentation using the moving MNIST dataset shows that the proposed network outperforms a recently proposed state-of-the-art RPCA network in the task of video foreground-background separation.
arXiv Detail & Related papers (2020-10-02T11:40:09Z) - Interpolation between Residual and Non-Residual Networks [24.690238357686134]
We present a novel ODE model by adding a damping term.
It can be shown that the proposed model can recover both a ResNet and a CNN by adjusting an coefficient.
Experiments on a number of image classification benchmarks show that the proposed model substantially improves the accuracy of ResNet and ResNeXt.
arXiv Detail & Related papers (2020-06-10T09:36:38Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.