Graph model overview, events scales structure and chains of events
- URL: http://arxiv.org/abs/2007.06035v1
- Date: Sun, 12 Jul 2020 16:42:09 GMT
- Title: Graph model overview, events scales structure and chains of events
- Authors: D. Pugliese
- Abstract summary: We present a graph model for a background independent, relational approach to spacetime.
The graph coloring determines the graph structure in clusters of graph vertices (events) that can be monochromatic (homogeneous loops) or polychromatic (inhomogeneous loops)
The emerging structure has self-similar characteristics on different scales (states)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a graph model for a background independent, relational approach to
spacetime emergence. The general idea and the graph main features, detailed in
[1], are discussed. This is a combinatorial (dynamical) metric graph, colored
on vertexes, endowed with a classical distribution of colors probability on the
graph vertexes. The graph coloring determines the graph structure in clusters
of graph vertices (events) that can be monochromatic (homogeneous loops) or
polychromatic (inhomogeneous loops). The probability is conserved after the
graph conformal expansion from an initial seed graph state to higher
(conformally expanded) graph states. The emerging structure has self-similar
characteristics on different scales (states). From the coloring, different
levels of vertices and thus graph levels arise as new aggregates of colored
vertices. In this second (derived) graphs level, the derived graph vertices
correspond to the polychromatic edges (with differently colored vertices) of
the initial graph. Vertex aggregates are related, as some levels (graph states)
to plexors and twistors (involving Clifford statistics). Two metric levels are
defined on the colored graph, the first level is a natural metric defined on
the graph, the second level emerges from the first and related, due to
symmetries. Metric structure reflects the graph colored structure under
conformal transformations evolving with its states under conformal expansion.
In some special cases vertices/events chains could be related to strings
generalizations.
Related papers
- Graphons of Line Graphs [6.822247359790484]
We show a simple method that can shed light on a subset of sparse graphs.
We show that graphs satisfying a particular property, which we call the square-degree property are sparse, but give rise to dense line graphs.
In particular, star graphs satisfy the square-degree property resulting in dense line graphs and non-zero graphons of line graphs.
arXiv Detail & Related papers (2024-09-03T06:50:03Z) - CKGConv: General Graph Convolution with Continuous Kernels [24.58050212186722]
We propose a novel and general graph convolution framework by parameterizing the kernels as continuous functions of pseudo-coordinates derived via graph positional encoding.
We name this Continuous Kernel Graph Convolution (CKGConv)
We show that CKGConv-based Networks outperform existing graph convolutional networks and perform comparably to the best graph transformers across a variety of graph datasets.
arXiv Detail & Related papers (2024-04-21T10:26:13Z) - Finding the Missing-half: Graph Complementary Learning for
Homophily-prone and Heterophily-prone Graphs [48.79929516665371]
Graphs with homophily-prone edges tend to connect nodes with the same class.
Heterophily-prone edges tend to build relationships between nodes with different classes.
Existing GNNs only take the original graph during training.
arXiv Detail & Related papers (2023-06-13T08:06:10Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - A Graph Convolution for Signed Directed Graphs [0.0]
Graph convolutions for signed directed graphs have not been delivered much yet.
We propose a novel complex Hermitian adjacency matrix that encodes graph information via complex numbers.
To the best of our knowledge, it is the first spectral convolution for graphs with signs.
arXiv Detail & Related papers (2022-08-23T01:58:35Z) - Explanation Graph Generation via Pre-trained Language Models: An
Empirical Study with Contrastive Learning [84.35102534158621]
We study pre-trained language models that generate explanation graphs in an end-to-end manner.
We propose simple yet effective ways of graph perturbations via node and edge edit operations.
Our methods lead to significant improvements in both structural and semantic accuracy of explanation graphs.
arXiv Detail & Related papers (2022-04-11T00:58:27Z) - G-Mixup: Graph Data Augmentation for Graph Classification [55.63157775049443]
Mixup has shown superiority in improving the generalization and robustness of neural networks by interpolating features and labels between two random samples.
We propose $mathcalG$-Mixup to augment graphs for graph classification by interpolating the generator (i.e., graphon) of different classes of graphs.
Experiments show that $mathcalG$-Mixup substantially improves the generalization and robustness of GNNs.
arXiv Detail & Related papers (2022-02-15T04:09:44Z) - Some Algorithms on Exact, Approximate and Error-Tolerant Graph Matching [3.655021726150369]
We present an extensive survey of various exact and inexact graph matching techniques.
A category of graph matching algorithms is presented, which reduces the graph size by removing the less important nodes.
We introduce a novel approach to measure graph similarity using geometric graphs.
arXiv Detail & Related papers (2020-12-30T18:51:06Z) - Factorizable Graph Convolutional Networks [90.59836684458905]
We introduce a novel graph convolutional network (GCN) that explicitly disentangles intertwined relations encoded in a graph.
FactorGCN takes a simple graph as input, and disentangles it into several factorized graphs.
We evaluate the proposed FactorGCN both qualitatively and quantitatively on the synthetic and real-world datasets.
arXiv Detail & Related papers (2020-10-12T03:01:40Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.