Disentangled Variational Autoencoder based Multi-Label Classification
with Covariance-Aware Multivariate Probit Model
- URL: http://arxiv.org/abs/2007.06126v1
- Date: Sun, 12 Jul 2020 23:08:07 GMT
- Title: Disentangled Variational Autoencoder based Multi-Label Classification
with Covariance-Aware Multivariate Probit Model
- Authors: Junwen Bai, Shufeng Kong, Carla Gomes
- Abstract summary: Multi-label classification is the challenging task of predicting the presence and absence of multiple targets.
We propose a novel framework for multi-label classification that effectively learns latent embedding spaces as well as label correlations.
- Score: 10.004081409670516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-label classification is the challenging task of predicting the presence
and absence of multiple targets, involving representation learning and label
correlation modeling. We propose a novel framework for multi-label
classification, Multivariate Probit Variational AutoEncoder (MPVAE), that
effectively learns latent embedding spaces as well as label correlations. MPVAE
learns and aligns two probabilistic embedding spaces for labels and features
respectively. The decoder of MPVAE takes in the samples from the embedding
spaces and models the joint distribution of output targets under a Multivariate
Probit model by learning a shared covariance matrix. We show that MPVAE
outperforms the existing state-of-the-art methods on a variety of application
domains, using public real-world datasets. MPVAE is further shown to remain
robust under noisy settings. Lastly, we demonstrate the interpretability of the
learned covariance by a case study on a bird observation dataset.
Related papers
- Self Supervised Correlation-based Permutations for Multi-View Clustering [7.972599673048582]
We propose an end-to-end deep learning-based MVC framework for general data.
Our approach involves learning meaningful fused data representations with a novel permutation-based canonical correlation objective.
We demonstrate the effectiveness of our model using ten MVC benchmark datasets.
arXiv Detail & Related papers (2024-02-26T08:08:30Z) - Mitigating Shortcut Learning with Diffusion Counterfactuals and Diverse Ensembles [95.49699178874683]
We propose DiffDiv, an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs)
We show that DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features.
We show that DPM-guided diversification is sufficient to remove dependence on shortcut cues, without a need for additional supervised signals.
arXiv Detail & Related papers (2023-11-23T15:47:33Z) - Towards Generalized Multi-stage Clustering: Multi-view Self-distillation [10.368796552760571]
Existing multi-stage clustering methods independently learn the salient features from multiple views and then perform the clustering task.
This paper proposes a novel multi-stage deep MVC framework where multi-view self-distillation (DistilMVC) is introduced to distill dark knowledge of label distribution.
arXiv Detail & Related papers (2023-10-29T03:35:34Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
We propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs)
We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
arXiv Detail & Related papers (2023-10-03T17:37:52Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - Leveraging Instance Features for Label Aggregation in Programmatic Weak
Supervision [75.1860418333995]
Programmatic Weak Supervision (PWS) has emerged as a widespread paradigm to synthesize training labels efficiently.
The core component of PWS is the label model, which infers true labels by aggregating the outputs of multiple noisy supervision sources as labeling functions.
Existing statistical label models typically rely only on the outputs of LF, ignoring the instance features when modeling the underlying generative process.
arXiv Detail & Related papers (2022-10-06T07:28:53Z) - Evolving Multi-Label Fuzzy Classifier [5.53329677986653]
Multi-label classification has attracted much attention in the machine learning community to address the problem of assigning single samples to more than one class at the same time.
We propose an evolving multi-label fuzzy classifier (EFC-ML) which is able to self-adapt and self-evolve its structure with new incoming multi-label samples in an incremental, single-pass manner.
arXiv Detail & Related papers (2022-03-29T08:01:03Z) - Gaussian Mixture Variational Autoencoder with Contrastive Learning for
Multi-Label Classification [27.043136219527767]
We propose a novel contrastive learning boosted multi-label prediction model.
By using contrastive learning in the supervised setting, we can exploit label information effectively.
We show that the learnt embeddings provide insights into the interpretation of label-label interactions.
arXiv Detail & Related papers (2021-12-02T04:23:34Z) - CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator [60.799183326613395]
We propose an unbiased estimator for categorical random variables based on multiple mutually negatively correlated (jointly antithetic) samples.
CARMS combines REINFORCE with copula based sampling to avoid duplicate samples and reduce its variance, while keeping the estimator unbiased using importance sampling.
We evaluate CARMS on several benchmark datasets on a generative modeling task, as well as a structured output prediction task, and find it to outperform competing methods including a strong self-control baseline.
arXiv Detail & Related papers (2021-10-26T20:14:30Z) - Trusted Multi-View Classification [76.73585034192894]
We propose a novel multi-view classification method, termed trusted multi-view classification.
It provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
The proposed algorithm jointly utilizes multiple views to promote both classification reliability and robustness.
arXiv Detail & Related papers (2021-02-03T13:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.