AirCapRL: Autonomous Aerial Human Motion Capture using Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2007.06343v2
- Date: Sat, 1 Aug 2020 11:10:52 GMT
- Title: AirCapRL: Autonomous Aerial Human Motion Capture using Deep
Reinforcement Learning
- Authors: Rahul Tallamraju, Nitin Saini, Elia Bonetto, Michael Pabst, Yu Tang
Liu, Michael J. Black and Aamir Ahmad
- Abstract summary: We introduce a deep reinforcement learning (RL) based multi-robot formation controller for the task of autonomous aerial human motion capture (MoCap)
We focus on vision-based MoCap, where the objective is to estimate the trajectory of body pose and shape a single moving person using multiple aerial vehicles.
- Score: 38.429105809093116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this letter, we introduce a deep reinforcement learning (RL) based
multi-robot formation controller for the task of autonomous aerial human motion
capture (MoCap). We focus on vision-based MoCap, where the objective is to
estimate the trajectory of body pose and shape of a single moving person using
multiple micro aerial vehicles. State-of-the-art solutions to this problem are
based on classical control methods, which depend on hand-crafted system and
observation models. Such models are difficult to derive and generalize across
different systems. Moreover, the non-linearity and non-convexities of these
models lead to sub-optimal controls. In our work, we formulate this problem as
a sequential decision making task to achieve the vision-based motion capture
objectives, and solve it using a deep neural network-based RL method. We
leverage proximal policy optimization (PPO) to train a stochastic decentralized
control policy for formation control. The neural network is trained in a
parallelized setup in synthetic environments. We performed extensive simulation
experiments to validate our approach. Finally, real-robot experiments
demonstrate that our policies generalize to real world conditions. Video Link:
https://bit.ly/38SJfjo Supplementary: https://bit.ly/3evfo1O
Related papers
- A comparison of RL-based and PID controllers for 6-DOF swimming robots:
hybrid underwater object tracking [8.362739554991073]
We present an exploration and assessment of employing a centralized deep Q-network (DQN) controller as a substitute for PID controllers.
Our primary focus centers on illustrating this transition with the specific case of underwater object tracking.
Our experiments, conducted within a Unity-based simulator, validate the effectiveness of a centralized RL agent over separated PID controllers.
arXiv Detail & Related papers (2024-01-29T23:14:15Z) - Reaching the Limit in Autonomous Racing: Optimal Control versus
Reinforcement Learning [66.10854214036605]
A central question in robotics is how to design a control system for an agile mobile robot.
We show that a neural network controller trained with reinforcement learning (RL) outperformed optimal control (OC) methods in this setting.
Our findings allowed us to push an agile drone to its maximum performance, achieving a peak acceleration greater than 12 times the gravitational acceleration and a peak velocity of 108 kilometers per hour.
arXiv Detail & Related papers (2023-10-17T02:40:27Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Decentralized Multi-Robot Formation Control Using Reinforcement Learning [2.7716102039510564]
This paper presents a decentralized leader-follower multi-robot formation control based on a reinforcement learning (RL) algorithm applied to a swarm of small educational Sphero robots.
To enhance the system behavior, we trained two different DDQN models, one for reaching the formation and the other for maintaining it.
The presented approach has been tested in simulation and real experiments which show that the multi-robot system can achieve and maintain a stable formation without the need for complex mathematical models and nonlinear control laws.
arXiv Detail & Related papers (2023-06-26T08:02:55Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.
Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.
We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - Learning Deep Sensorimotor Policies for Vision-based Autonomous Drone
Racing [52.50284630866713]
Existing systems often require hand-engineered components for state estimation, planning, and control.
This paper tackles the vision-based autonomous-drone-racing problem by learning deep sensorimotor policies.
arXiv Detail & Related papers (2022-10-26T19:03:17Z) - Human-AI Shared Control via Frequency-based Policy Dissection [34.0399894373716]
Human-AI shared control allows human to interact and collaborate with AI to accomplish control tasks in complex environments.
Previous Reinforcement Learning (RL) methods attempt the goal-conditioned design to achieve human-controllable policies.
We develop a simple yet effective frequency-based approach called textitPolicy Dissection to align the intermediate representation of the learned neural controller with the kinematic attributes of the agent behavior.
arXiv Detail & Related papers (2022-05-31T23:57:55Z) - Verifying Learning-Based Robotic Navigation Systems [61.01217374879221]
We show how modern verification engines can be used for effective model selection.
Specifically, we use verification to detect and rule out policies that may demonstrate suboptimal behavior.
Our work is the first to demonstrate the use of verification backends for recognizing suboptimal DRL policies in real-world robots.
arXiv Detail & Related papers (2022-05-26T17:56:43Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
The current dominant paradigm in sensorimotor control, whether imitation or reinforcement learning, is to train policies directly in raw action spaces.
We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space.
NDPs outperform the prior state-of-the-art in terms of either efficiency or performance across several robotic control tasks.
arXiv Detail & Related papers (2020-12-04T18:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.