Quantum key distribution over quantum repeaters with encoding: Using
Error Detection as an Effective Post-Selection Tool
- URL: http://arxiv.org/abs/2007.06376v1
- Date: Mon, 13 Jul 2020 13:37:50 GMT
- Title: Quantum key distribution over quantum repeaters with encoding: Using
Error Detection as an Effective Post-Selection Tool
- Authors: Yumang Jing, Daniel Alsina Leal, and Mohsen Razavi
- Abstract summary: We show that it is often more efficient to use the error detection, rather than the error correction, capability of the underlying code to sift out cases where an error has been detected.
We implement our technique for three-qubit repetition codes by modelling different sources of error in crucial components of the system.
- Score: 0.9176056742068812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a post-selection technique, based on quantum error detection, for
quantum key distribution (QKD) systems that run over quantum repeaters with
encoding. In such repeaters, quantum error correction techniques are used for
entanglement distillation. By developing an analytical approach to study such
quantum repeaters, we show that, in the context of QKD, it is often more
efficient to use the error detection, rather than the error correction,
capability of the underlying code to sift out cases where an error has been
detected. We implement our technique for three-qubit repetition codes by
modelling different sources of error in crucial components of the system. We
then investigate in detail the impact of such imperfections on the secret key
generation rate of the QKD system, and how one can use the information obtained
during entanglement swapping and decoding stages to maximize the rate. For
benchmarking purposes, we specify the maximum allowed error rates in different
components of the setup below which positive key rates can be obtained.
Related papers
- Logical Error Rates for a [[4,2,2]]-Encoded Variational Quantum Eigensolver Ansatz [0.0]
We quantify how the quantum error detection code improves the logical error rate, accuracy, and precision of an encoded variational quantum eigensolver application.
We find that the most aggressive post-selection strategies improve the accuracy and precision of the encoded estimates even at the cost of increasing loss of samples.
arXiv Detail & Related papers (2024-05-05T19:02:58Z) - Analysis of Maximum Threshold and Quantum Security for Fault-Tolerant
Encoding and Decoding Scheme Base on Steane Code [10.853582091917236]
The original Steane code is not fault-tolerant because the CNOT gates in an encoded block may cause error propagation.
We first propose a fault-tolerant encoding and decoding scheme, which analyzes all possible errors caused by each quantum gate in an error-correction period.
We then provide the fault-tolerant scheme of the universal quantum gate set, including fault-tolerant preparation and verification of ancillary states.
arXiv Detail & Related papers (2024-03-07T07:46:03Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Optimizing quantum codes with an application to the loss channel with
partial erasure information [1.90365714903665]
We investigate the loss channel, which plays a key role in quantum communication, and in particular in quantum key distribution over long distances.
We develop a numerical set of tools that allows to optimize an encoding specifically for recovering lost particles both deterministically and probabilistically.
This allows us to arrive at new codes ideal for the distribution of entangled states in this particular setting, and also to investigate if encoding in qudits or allowing for non-deterministic correction proves advantageous compared to known QECCs.
arXiv Detail & Related papers (2021-05-27T15:24:57Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes.
For simplicity, we focus on the three-dimensional (3D) toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold.
We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model.
arXiv Detail & Related papers (2020-04-15T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.