A new approach to descriptors generation for image retrieval by
analyzing activations of deep neural network layers
- URL: http://arxiv.org/abs/2007.06624v1
- Date: Mon, 13 Jul 2020 18:53:10 GMT
- Title: A new approach to descriptors generation for image retrieval by
analyzing activations of deep neural network layers
- Authors: Pawe{\l} Staszewski, Maciej Jaworski, Jinde Cao, Leszek Rutkowski
- Abstract summary: We consider the problem of descriptors construction for the task of content-based image retrieval using deep neural networks.
It is known that the total number of neurons in the convolutional part of the network is large and the majority of them have little influence on the final classification decision.
We propose a novel algorithm that allows us to extract the most significant neuron activations and utilize this information to construct effective descriptors.
- Score: 43.77224853200986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider the problem of descriptors construction for the
task of content-based image retrieval using deep neural networks. The idea of
neural codes, based on fully connected layers activations, is extended by
incorporating the information contained in convolutional layers. It is known
that the total number of neurons in the convolutional part of the network is
large and the majority of them have little influence on the final
classification decision. Therefore, in the paper we propose a novel algorithm
that allows us to extract the most significant neuron activations and utilize
this information to construct effective descriptors. The descriptors consisting
of values taken from both the fully connected and convolutional layers
perfectly represent the whole image content. The images retrieved using these
descriptors match semantically very well to the query image, and also they are
similar in other secondary image characteristics, like background, textures or
color distribution. These features of the proposed descriptors are verified
experimentally based on the IMAGENET1M dataset using the VGG16 neural network.
Related papers
- Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Finding Concept Representations in Neural Networks with Self-Organizing
Maps [2.817412580574242]
We show how self-organizing maps can be used to inspect how activation of layers of neural networks correspond to neural representations of abstract concepts.
We show that, among the measures tested, the relative entropy of the activation map for a concept is a suitable candidate and can be used as part of a methodology to identify and locate the neural representation of a concept.
arXiv Detail & Related papers (2023-12-10T12:10:34Z) - Image segmentation with traveling waves in an exactly solvable recurrent
neural network [71.74150501418039]
We show that a recurrent neural network can effectively divide an image into groups according to a scene's structural characteristics.
We present a precise description of the mechanism underlying object segmentation in this network.
We then demonstrate a simple algorithm for object segmentation that generalizes across inputs ranging from simple geometric objects in grayscale images to natural images.
arXiv Detail & Related papers (2023-11-28T16:46:44Z) - Unleashing the Power of Depth and Pose Estimation Neural Networks by
Designing Compatible Endoscopic Images [12.412060445862842]
We conduct a detail analysis of the properties of endoscopic images and improve the compatibility of images and neural networks.
First, we introcude the Mask Image Modelling (MIM) module, which inputs partial image information instead of complete image information.
Second, we propose a lightweight neural network to enhance the endoscopic images, to explicitly improve the compatibility between images and neural networks.
arXiv Detail & Related papers (2023-09-14T02:19:38Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - A Deep Learning-based Compression and Classification Technique for Whole
Slide Histopathology Images [0.31498833540989407]
We build an ensemble of neural networks that enables a compressive autoencoder in a supervised fashion to retain a denser and more meaningful representation of the input histology images.
We test the compressed images using transfer learning-based classifiers and show that they provide promising accuracy and classification performance.
arXiv Detail & Related papers (2023-05-11T22:20:05Z) - Multilayer deep feature extraction for visual texture recognition [0.0]
This paper is focused on improving the accuracy of convolutional neural networks in texture classification.
It is done by extracting features from multiple convolutional layers of a pretrained neural network and aggregating such features using Fisher vector.
We verify the effectiveness of our method on texture classification of benchmark datasets, as well as on a practical task of Brazilian plant species identification.
arXiv Detail & Related papers (2022-08-22T03:53:43Z) - HistoTransfer: Understanding Transfer Learning for Histopathology [9.231495418218813]
We compare the performance of features extracted from networks trained on ImageNet and histopathology data.
We investigate if features learned using more complex networks lead to gain in performance.
arXiv Detail & Related papers (2021-06-13T18:55:23Z) - Convolutional Neural Networks from Image Markers [62.997667081978825]
Feature Learning from Image Markers (FLIM) was recently proposed to estimate convolutional filters, with no backpropagation, from strokes drawn by a user on very few images.
This paper extends FLIM for fully connected layers and demonstrates it on different image classification problems.
The results show that FLIM-based convolutional neural networks can outperform the same architecture trained from scratch by backpropagation.
arXiv Detail & Related papers (2020-12-15T22:58:23Z) - Neural Sparse Representation for Image Restoration [116.72107034624344]
Inspired by the robustness and efficiency of sparse coding based image restoration models, we investigate the sparsity of neurons in deep networks.
Our method structurally enforces sparsity constraints upon hidden neurons.
Experiments show that sparse representation is crucial in deep neural networks for multiple image restoration tasks.
arXiv Detail & Related papers (2020-06-08T05:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.