Inertial Sensing Meets Artificial Intelligence: Opportunity or
Challenge?
- URL: http://arxiv.org/abs/2007.06727v1
- Date: Mon, 13 Jul 2020 22:33:21 GMT
- Title: Inertial Sensing Meets Artificial Intelligence: Opportunity or
Challenge?
- Authors: You Li, Ruizhi Chen, Xiaoji Niu, Yuan Zhuang, Zhouzheng Gao, Xin Hu,
Naser El-Sheimy
- Abstract summary: This article reviews the research on using AI technology to enhance inertial sensing from various aspects.
It includes sensor design and selection, calibration and error modeling, navigation and motion-sensing algorithms, multi-sensor information fusion, system evaluation, and practical application.
It summarizes nine advantages and nine challenges of AI-enhanced inertial sensing and then points out future research directions.
- Score: 12.244109673209769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The inertial navigation system (INS) has been widely used to provide
self-contained and continuous motion estimation in intelligent transportation
systems. Recently, the emergence of chip-level inertial sensors has expanded
the relevant applications from positioning, navigation, and mobile mapping to
location-based services, unmanned systems, and transportation big data.
Meanwhile, benefit from the emergence of big data and the improvement of
algorithms and computing power, artificial intelligence (AI) has become a
consensus tool that has been successfully applied in various fields. This
article reviews the research on using AI technology to enhance inertial sensing
from various aspects, including sensor design and selection, calibration and
error modeling, navigation and motion-sensing algorithms, multi-sensor
information fusion, system evaluation, and practical application. Based on the
over 30 representative articles selected from the nearly 300 related
publications, this article summarizes the state of the art, advantages, and
challenges on each aspect. Finally, it summarizes nine advantages and nine
challenges of AI-enhanced inertial sensing and then points out future research
directions.
Related papers
- Networking Systems for Video Anomaly Detection: A Tutorial and Survey [56.44953602790945]
Video Anomaly Detection (VAD) is a fundamental research task within the Artificial Intelligence (AI) community.
This article offers an exhaustive tutorial for novices in NSVAD.
We showcase our latest NSVAD research in industrial IoT and smart cities, along with an end-cloud collaborative architecture for deployable NSVAD.
arXiv Detail & Related papers (2024-05-16T02:00:44Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - A Survey of Generative AI for Intelligent Transportation Systems: Road Transportation Perspective [7.770651543578893]
We introduce the principles of different generative AI techniques.
We classify tasks in ITS into four types: traffic perception, traffic prediction, traffic simulation, and traffic decision-making.
We illustrate how generative AI techniques addresses key issues in these four different types of tasks.
arXiv Detail & Related papers (2023-12-13T16:13:23Z) - Inertial Navigation Meets Deep Learning: A Survey of Current Trends and
Future Directions [15.619053656143564]
In recent years, the development of machine learning and deep learning techniques has increased significantly in the field of inertial sensing and sensor fusion.
This paper provides an in-depth review of deep learning methods for inertial sensing and sensor fusion.
We discuss learning methods for calibration and denoising as well as approaches for improving pure inertial navigation and sensor fusion.
arXiv Detail & Related papers (2023-06-22T14:32:23Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Vision Paper: Causal Inference for Interpretable and Robust Machine
Learning in Mobility Analysis [71.2468615993246]
Building intelligent transportation systems requires an intricate combination of artificial intelligence and mobility analysis.
The past few years have seen rapid development in transportation applications using advanced deep neural networks.
This vision paper emphasizes research challenges in deep learning-based mobility analysis that require interpretability and robustness.
arXiv Detail & Related papers (2022-10-18T17:28:58Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
A fully-autonomous aerial robot for high-speed object grasping has been proposed.
As an additional sub-task, our system is able to autonomously pierce balloons located in poles close to the surface.
Our approach has been validated in a challenging international competition and has shown outstanding results.
arXiv Detail & Related papers (2021-12-10T11:49:51Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Toward a Rational and Ethical Sociotechnical System of Autonomous
Vehicles: A Novel Application of Multi-Criteria Decision Analysis [0.0]
The expansion of artificial intelligence (AI) and autonomous systems has shown the potential to generate enormous social good.
There is a pressing need to address relevant social concerns to allow for the development of systems of intelligent agents.
arXiv Detail & Related papers (2021-02-04T23:52:31Z) - Sensor Artificial Intelligence and its Application to Space Systems -- A
White Paper [35.78525324168878]
The goal of this white paper is to establish "Sensor AI" as a dedicated research topic.
A closer look at the sensors and their physical properties within AI approaches will lead to more robust and widely applicable algorithms.
Sensor AI will play a decisive role in autonomous driving as well as in areas of automated production, predictive maintenance or space research.
arXiv Detail & Related papers (2020-06-09T14:10:35Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.