Decoding CNN based Object Classifier Using Visualization
- URL: http://arxiv.org/abs/2007.07482v1
- Date: Wed, 15 Jul 2020 05:01:27 GMT
- Title: Decoding CNN based Object Classifier Using Visualization
- Authors: Abhishek Mukhopadhyay, Imon Mukherjee, Pradipta Biswas
- Abstract summary: We visualize what type of features are extracted in different convolution layers of CNN.
Visualizing heat map of activation helps us to understand how CNN classifies and localizes different objects in image.
- Score: 6.666597301197889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates how working of Convolutional Neural Network (CNN) can
be explained through visualization in the context of machine perception of
autonomous vehicles. We visualize what type of features are extracted in
different convolution layers of CNN that helps to understand how CNN gradually
increases spatial information in every layer. Thus, it concentrates on region
of interests in every transformation. Visualizing heat map of activation helps
us to understand how CNN classifies and localizes different objects in image.
This study also helps us to reason behind low accuracy of a model helps to
increase trust on object detection module.
Related papers
- A novel feature-scrambling approach reveals the capacity of
convolutional neural networks to learn spatial relations [0.0]
Convolutional neural networks (CNNs) are one of the most successful computer vision systems to solve object recognition.
Yet it remains poorly understood how CNNs actually make their decisions, what the nature of their internal representations is, and how their recognition strategies differ from humans.
arXiv Detail & Related papers (2022-12-12T16:40:29Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
Deep convolutional neural networks (CNNs) have been shown to provide excellent models for its functional analogue in the brain, the ventral stream in visual cortex.
Here we consider some prominent statistical patterns that are known to exist in the internal representations of either CNNs or the visual cortex.
We show that CNNs and visual cortex share a similarly tight relationship between dimensionality expansion/reduction of object representations and reformatting of image information.
arXiv Detail & Related papers (2022-05-27T08:06:40Z) - Deeply Explain CNN via Hierarchical Decomposition [75.01251659472584]
In computer vision, some attribution methods for explaining CNNs attempt to study how the intermediate features affect the network prediction.
This paper introduces a hierarchical decomposition framework to explain CNN's decision-making process in a top-down manner.
arXiv Detail & Related papers (2022-01-23T07:56:04Z) - Assessing learned features of Deep Learning applied to EEG [0.0]
We use 3 different methods to extract EEG-relevant features from a CNN trained on raw EEG data.
We show that visualization of a CNN model can reveal interesting EEG results.
arXiv Detail & Related papers (2021-11-08T07:43:40Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
We propose an approach to visually interpret CNN features given a set of images by creating corresponding images that depict the most informative features of a specific layer.
Our method uses a dual-objective activation and distance loss, without requiring a generator network nor modifications to the original model.
arXiv Detail & Related papers (2021-01-29T07:46:39Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
We present an analytic framework to systematically identify hidden units within image classification and image generation networks.
First, we analyze a convolutional neural network (CNN) trained on scene classification and discover units that match a diverse set of object concepts.
Second, we use a similar analytic method to analyze a generative adversarial network (GAN) model trained to generate scenes.
arXiv Detail & Related papers (2020-09-10T17:59:10Z) - Teaching CNNs to mimic Human Visual Cognitive Process & regularise
Texture-Shape bias [18.003188982585737]
Recent experiments in computer vision demonstrate texture bias as the primary reason for supreme results in models employing Convolutional Neural Networks (CNNs)
It is believed that the cost function forces the CNN to take a greedy approach and develop a proclivity for local information like texture to increase accuracy, thus failing to explore any global statistics.
We propose CognitiveCNN, a new intuitive architecture, inspired from feature integration theory in psychology to utilise human interpretable feature like shape, texture, edges etc. to reconstruct, and classify the image.
arXiv Detail & Related papers (2020-06-25T22:32:54Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z) - An Information-theoretic Visual Analysis Framework for Convolutional
Neural Networks [11.15523311079383]
We introduce a data model to organize the data that can be extracted from CNN models.
We then propose two ways to calculate entropy under different circumstances.
We develop a visual analysis system, CNNSlicer, to interactively explore the amount of information changes inside the model.
arXiv Detail & Related papers (2020-05-02T21:36:50Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.